

March 30, 2010

Ubiquiti Networks 91 E. Tasman San Jose, CA 95134

Dear Robert Pera,

Enclosed is the EMC Wireless test report for compliance testing of the Ubiquiti Networks, M900 as tested to the requirements of Title 47 of the CFR, Ch. 1 (10-1-06 ed.), Part 15, Subpart B, ICES-003, Issue 4 February 2004 for a Class A Digital Device and FCC Part 15 Subpart C, RSS-210, Issue 7, June 2007 for Intentional Radiators.

Thank you for using the services of MET Laboratories, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours, MET LABORATORIES, INC.

fer andres

Jennifer Sanchez Documentation Department

Reference: (\Ubiquiti Networks\EMCS82106-FCC247_Rev1)

Certificates and reports shall not be reproduced except in full, without the written permission of MET Laboratories, Inc.

Electromagnetic Compatibility Criteria Test Report

for the

Ubiquiti Networks M900

Tested under the FCC Certification Rules contained in Title 47 of the CFR, Parts 15 Subpart B & ICES-003 for Class A Digital Devices & 15.247 Subpart C & RSS-210, Issue 7, June 2007 for Intentional Radiators

MET Report: EMCS82106-FCC247_Rev1

March 30, 2010

Prepared For:

Ubiquiti Networks 91 E. Tasman San Jose, CA 95134

> Prepared By: MET Laboratories, Inc. 3162 Belick St. Santa Clara, CA 95054

Electromagnetic Compatibility Criteria Test Report

for the

Ubiquiti Networks M900

Tested under the FCC Certification Rules contained in Title 47 of the CFR, Parts 15 Subpart B & ICES-003 for Class A Digital Devices & 15.247 Subpart C & RSS-210, Issue 7, June 2007 for Intentional Radiators

Anderson Soungpanya, Project Engineer Electromagnetic Compatibility Lab

Jennifer Janohez

Jennifer Sanchez Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules Parts 15B, 15.247 and Industry Canada standards ICES-003, Issue 4 February 2004, RSS-210, Issue 7, June 2007 under normal use and maintenance.

Shawn McMillen, Wireless Manager, Electromagnetic Compatibility Lab

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	February 23, 2010	Initial Issue.
1	March 18, 2010	Final Issue (Update Model Number)
2	March 30, 2010	Update OBW tables

Table of Contents

I.	Executive Summary	1
	A. Purpose of Test	
	B. Executive Summary	2
П.	Equipment Configuration	
	A. Overview	
	B. References	5
	C. Test Site	5
	D. Description of Test Sample	5
	E. Equipment Configuration	8
	F. Support Equipment	8
	G. Ports and Cabling Information	8
	H. Mode of Operation	9
	I. Method of Monitoring EUT Operation	9
	J. Modifications	
	a) Modifications to EUT	9
	b) Modifications to Test Standard	9
	K. Disposition of EUT	9
III.	Electromagnetic Compatibility Criteria for Unintentional Radiators	10
	§ 15.107(a) Conducted Emissions Limits	
	§ 15.109(a) Radiated Emissions Limits	
IV.	Electromagnetic Compatibility Criteria for Intentional Radiators	22
	§ 15.203 Antenna Requirement	
	§ 15.207(a) Conducted Emissions Limits	
	§ 15.247(a) 6 dB and 99% Bandwidth	
	§ 15.247(b) Peak Power Output and RF Exposure	
	§ 15.247(d) Radiated Spurious Emissions Requirements and Band Edge	
	RSS-GEN Receiver Spurious Emissions	
	§ 15.247(d) RF Conducted Spurious Emissions Requirements and Band Edge	
	§ 15.247(e) Peak Power Spectral Density	
V.	Test Equipment	
VI.	Certification & User's Manual Information	
	A. Certification Information	
	B. Label and User's Manual Information	
VII.	ICES-003 Procedural & Labeling Requirements	146

List of Tables

Table 1. Executive Summary of EMC Part 15.247 ComplianceTesting	
Table 2. EUT Summary Table	
Table 3. References	
Table 4. Equipment Configuration	
Table 5. Support Equipment	
Table 6. Ports and Cabling Information	
Table 7. Conducted Limits for Radio Frequency Devices calculated from FCC Part 15 Subsections 15.107(a) (b) and	
15.207(a)	11
Table 8. Conducted Emissions - Voltage, AC Power, Phase Line	12
Table 9. Conducted Emissions - Voltage, AC Power, Neutral Line	13
Table 10. Radiated Emissions Limits calculated from FCC Part 15, §15.109 (a) (b)	15
Table 11. Radiated Emissions Limits, Test Results, 30MHz – 1GHz FCC Limits	16
Table 12. Radiated Emissions Limits, Test Results, above 1GHz FCC Limits	17
Table 13. Radiated Emissions Limits, Test Results, ICES-003 Limits	
Table 14. Antenna List	
Table 15. Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)	
Table 16. Conducted Emissions, 15.207, Phase Line, Test Results	
Table 17. Conducted Emissions, 15.207, Neutral Line, Test Results	
Table 18. Occupied Bandwidth 802.11g (5MHz) Mode Test Results - Chain 0	
Table 19. Occupied Bandwidth 802.11g (10MHz) Mode Test Results - Chain 0	
Table 20. Occupied Bandwidth 802.11g (20MHz) Mode Test Results - Chain 0	
Table 21. Occupied Bandwidth 802.11n (5MHz) Mode Test Results - Chain 0	
Table 22. Occupied Bandwidth 802.11n (10MHz) Mode Test Results – Chain 0	
Table 23. Occupied Bandwidth 802.11n (20MHz) Mode Test Results – Chain 0	
Table 24. Occupied Bandwidth 802.11n (5MHz) Mode Test Results – Chain 1	
Table 25. Occupied Bandwidth 802.11n (10MHz) Mode Test Results – Chain 1	
Table 26. Occupied Bandwidth 802.11n (20MHz) Mode Test Results – Chain 1	
Table 27. Output Power Requirements from §15.247	
Table 28. RF Output Power 802.11g (5MHz) Mode Test Results – Chain 0	
Table 29. RF Output Power 802.11g (10MHz) Mode Test Results – Chain 0.	
Table 30. RF Output Power 802.11g (20MHz) Mode Test Results – Chain 0	
Table 31. RF Output Power 802.11n (5MHz) Mode Test Results – Chain 0. Table 32. RF Output Power 802.11n (10MHz) Mode Test Results – Chain 0.	
Table 32. RF Output Power 802.11n (10MHz) Mode Test Results – Chain 0	
Table 33. RF Output Power 802.11n (20MHz) Mode Test Results – Chain 0. Table 34. RF Output Power 802.11n (20MHz) Mode Test Results – Chain 0.	38
Table 34. RF Output Power 802.11n (5MHz) Mode Test Results – Chain 1 Table 25. RF Output Power 802.11n (10MHz) Mode Test Results – Chain 1	
Table 35. RF Output Power 802.11n (10MHz) Mode Test Results – Chain 1 Table 26. RF Output Power 802.11r (20MHz) Mode Test Results – Chain 1	
Table 36. RF Output Power 802.11n (20MHz) Mode Test Results – Chain 1 Table 27. RF Output Power Combined Test Results	
Table 37. RF Output Power Combined Test Results	60 74
Table 38. Restricted Bands of Operation. Table 30. Redicted Emissions Limits Calculated from ECC Part 15. § 15.200 (c)	
Table 39. Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)	
Table 40. 15.209 Radiated Emissions Limits, Test Results, 30MHz – 1GHz Table 41. Radiated Harmonic Emissions, 802.11g 5MHz Mode	
Table 42. Radiated Harmonic Emissions, 802.11g 10MHz Mode	
Table 42. Radiated Harmonic Emissions, 802.11g 100H12 Mode Table 43. Radiated Harmonic Emissions, 802.11g 20MHz Mode	
Table 43. Radiated Harmonic Emissions, 802.11g 200012 Mode Table 44. Radiated Harmonic Emissions, 802.11n 5MHz Mode	
Table 45. Radiated Harmonic Emissions, 802.11n JMHz Mode	
Table 45. Radiated Harmonic Emissions, 802.11n ToWHZ Mode Table 46. Radiated Harmonic Emissions, 802.11n 20MHz Mode	
Table 40. Radiated Halmonic Emissions, 802.111 200012 blode Table 47. Spurious Emission Limits for Receivers	
Table 47. Spurious Emission Limits for Receivers Table 48. Peak Power Spectral Density 802.11g (5MHz) Mode Test Results – Chain 0	117
Table 49. Peak Power Spectral Density 802.11g (J0MHz) Mode Test Results – Chain 0	
Table 50. Peak Power Spectral Density 802.11g (20MHz) Mode Test Results - Chain 0.	
\mathbf{I} \mathbf{J} \mathbf{U} \mathbf{V} \mathbf{V} \mathbf{U} \mathbf{U}	

Table 51. Peak Power Spectral Density 802.11n (5MHz) Mode Test Results - Chain 0	
Table 52. Peak Power Spectral Density 802.11n (10MHz) Mode Test Results - Chain 0	
Table 53. Peak Power Spectral Density 802.11n (20MHz) Mode Test Results - Chain 0	
Table 54. Peak Power Spectral Density 802.11n (5MHz) Mode Test Results - Chain 1	
Table 55. Peak Power Spectral Density 802.11n (10MHz) Mode Test Results - Chain 1	
Table 56. Peak Power Spectral Density 802.11n (20MHz) Mode Test Results - Chain 1	
Table 57. Peak Power Spectral Density 802.11n (5MHz) Mode Test Results - Combined	
Table 58. Peak Power Spectral Density 802.11n (10MHz) Mode Test Results - Combined	
Table 59. Peak Power Spectral Density 802.11n (20MHz) Mode Test Results - Combined	
Table 60. Test Equipment List	

List of Plots

Plot 1.	Conducted Emission, Phase Line Plot	
	Conducted Emission, Neutral Line Plot	
	Radiated Emissions, 30MHz – 1GHz, FCC Limits	
	Radiated Emissions, above 1GHz, FCC Limits	
	Radiated Emissions, ICES-003 Limits	
Plot 6.	Conducted Emissions, Phase Line	
Plot 7.	Conducted Emissions, Neutral Line	
Plot 8	Occupied Bandwidth, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (99%)	32
	Occupied Bandwidth, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (100kHz)	
	0. Occupied Bandwidth, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth, Chain 0 (99%)	
	. Occupied Bandwidth, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth, Chain 0 (100kHz)	
	2. Occupied Bandwidth, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 (99%)	
	5. Occupied Bandwidth, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 (100kHz)	
	 Occupied Bandwidth, 922MHz High Channel, 802.11g, 5MHz Bandwidth, Chain 0 (199%) 	
	5. Occupied Bandwidth, 922MHz High Channel, 802.11g, 5MHz Bandwidth, Chain 0 (100kHz)	
	5. Occupied Bandwidth, 912MHz Low Channel, 802.11g, 10MHz Bandwidth, Chain 0 (99%)	
	⁷ . Occupied Bandwidth, 912MHz Low Channel, 802.11g, 10MHz Bandwidth, Chain 0 (100kHz)	
	B. Occupied Bandwidth, 917MHz High Channel, 802.11g, 10MHz Bandwidth, Chain 0 (100KHz)	
Dlot 10	 Occupied Bandwidth, 917MHz High Channel, 802.11g, 10MHz Bandwidth, Chain 0 (9976) Occupied Bandwidth, 917MHz High Channel, 802.11g, 10MHz Bandwidth, Chain 0 (100kHz) 	
	0. Occupied Bandwidth, 912MHz Low Channel, 802.11g, 20MHz Bandwidth, Chain 0 (199%)	
	. Occupied Bandwidth, 912MHz Low Channel, 802.11g, 20MHz Bandwidth, Chain 0 (99%)	
	2. Occupied Bandwidth, 917MHz High Channel, 802.11g, 20MHz Bandwidth, Chain 0 (100kHz)	
	5. Occupied Bandwidth, 917MHz High Channel, 802.11g, 20MHz Bandwidth, Chain 0 (99%)	
	 Occupied Bandwidth, 907MHz High Channel, 802.11g, 200Hz Bandwidth, Chain 0 (100kHz) Occupied Bandwidth, 907MHz Low Channel, 802.11n, 5MHz Bandwidth, Chain 0 (99%) 	
	5. Occupied Bandwidth, 907MHz Low Channel, 802.11n, 5MHz Bandwidth, Chain 0 (99%)	
	5. Occupied Bandwidth, 912MHz Low Channel 1, 802.11n, 5MHz Bandwidth, Chain 0 (100kHz)	
	7. Occupied Bandwidth, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth, Chain 0 (100kHz)	
	 Occupied Bandwidth, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth, Chain 0 (99%) Occupied Bandwidth, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth, Chain 0 (100kHz) 	
	 Occupied Bandwidth, 917MHz Mid Channel 2, 802.111, 5MHz Bandwidth, Chain 0 (100kHz) Occupied Bandwidth, 922MHz High Channel , 802.11n, 5MHz Bandwidth, Chain 0 (99%) 	
	. Occupied Bandwidth, 922MHz High Channel, 802.11n, 5MHz Bandwidth, Chain 0 (100kHz)	
	2. Occupied Bandwidth, 912MHz Low Channel, 802.11n, 10MHz Bandwidth, Chain 0 (99%)	
	6. Occupied Bandwidth, 912MHz Low Channel, 802.11n, 10MHz Bandwidth, Chain 0 (100kHz)	
	Cocupied Bandwidth, 917MHz High Channel, 802.11n, 10MHz Bandwidth, Chain 0 (99%)	
	5. Occupied Bandwidth, 917MHz High Channel, 802.11n, 10MHz Bandwidth, Chain 0 (100kHz)	
	5. Occupied Bandwidth, 912MHz Low Channel, 802.11n, 20MHz Bandwidth, Chain 0 (99%)	
	7. Occupied Bandwidth, 912MHz Low Channel, 802.11n, 20MHz Bandwidth, Chain 0 (100kHz)	
	8. Occupied Bandwidth, 917MHz High Channel, 802.11n, 20MHz Bandwidth, Chain 0 (99%)	
	9. Occupied Bandwidth, 917MHz High Channel, 802.11n, 20MHz Bandwidth, Chain 0 (100kHz)	
	0. Occupied Bandwidth, 907MHz Low Channel, 802.11n, 5MHz Bandwidth, Chain 1 (99%)	
	. Occupied Bandwidth, 907MHz Low Channel, 802.11n, 5MHz Bandwidth, Chain 1 (100kHz)	
	2. Occupied Bandwidth, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth, Chain 1 (99%)	
	6. Occupied Bandwidth, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth, Chain 1 (100kHz)	
	Cocupied Bandwidth, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth, Chain 1 (99%)	
	5. Occupied Bandwidth, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth, Chain 1 (100kHz)	
	6. Occupied Bandwidth, 922MHz High Channel, 802.11n, 5MHz Bandwidth, Chain 1 (99%)	
	7. Occupied Bandwidth, 922MHz High Channel, 802.11n, 5MHz Bandwidth, Chain 1 (100kHz)	
	8. Occupied Bandwidth, 912MHz Low Channel, 802.11n, 10MHz Bandwidth, Chain 1 (99%)	
	9. Occupied Bandwidth, 912MHz Low Channel, 802.11n, 10MHz Bandwidth, Chain 1 (100kHz)	
	0. Occupied Bandwidth, 917MHz High Channel, 802.11n, 10MHz Bandwidth, Chain 1 (99%)	
Plot 51	. Occupied Bandwidth, 917MHz High Channel, 802.11n, 10MHz Bandwidth, Chain 1 (100kHz)	53

Plot 52. Occupied Bandwidth, 912MH1z Low Channel, 802.1 In, 20MH2 Bandwidth, Chain 1 (100kHz). 54 Plot 53. Occupied Bandwidth, 917MH2 High Channel, 802.1 In, 20MH2 Bandwidth, Chain 1 (100kHz). 55 Plot 56. Output Power 907MH2 Low Channel 802.1 Ig SMH2 Bandwidth, Chain 0. 61 Plot 56. Output Power 917MH2 Mid Channel, 802.1 Ig SMH2 Bandwidth, Chain 0. 61 Plot 57. Output Power 917MH2 Mid Channel, 802.1 Ig SMH2 Bandwidth, Chain 0. 62 Plot 69. Output Power 912MH2 Low Channel 802.1 Ig SMH2 Bandwidth, Chain 0. 62 Plot 60. Output Power 912MH2 Low Channel 802.1 Ig 20MH2 Bandwidth, Chain 0. 63 Plot 61. Output Power 917MH2 High Channel 802.1 Ig 20MH2 Bandwidth, Chain 0. 64 Plot 62. Output Power 917MH2 High Channel 802.1 In 20MH2 Bandwidth, Chain 0. 65 Plot 63. Output Power 912MH2 High Channel 802.1 In 5MH2 Bandwidth, Chain 0. 65 Plot 64. Output Power 912MH2 Mid Channel 802.1 In 5MH2 Bandwidth, Chain 0. 66 Plot 65. Output Power 912MH2 Mid Channel 802.1 In 10MH2 Bandwidth, Chain 0. 67 Plot 70. Output Power 912MH2 High Channel 802.1 In 10MH2 Bandwidth, Chain 0. 67 Plot 70. Output Power 912MH2 High Channel 802.1 In 20MH2 Bandwidth, Chain 0. 67	Plat 52 Qaawiid Dandwidth 012MUz Low Channel 802 11n 20MUz Dandwidth Chain 1 (000/)	51
Plot 54. Occupied Bandwidth, 917MHz High Channel, 802.11n, 20MHz Bandwidth, Chain 1 (100kHz). 55 Plot 55. Octput Power 907MHz Lew Channel 80.211g 5MHz Bandwidth, Chain 0. 61 Plot 57. Output Power 912MHz Mid Channel 2, 802.11g 5MHz Bandwidth, Chain 0. 62 Plot 58. Output Power 912MHz High Channel, 802.11g 5MHz Bandwidth, Chain 0. 62 Plot 59. Output Power 912MHz Lew Channel 802.11g 10MHz Bandwidth, Chain 0. 63 Plot 61. Output Power 917MHz Ligh Channel 802.11g 10MHz Bandwidth, Chain 0. 64 Plot 63. Output Power 917MHz Ligh Channel 802.11g 20MHz Bandwidth, Chain 0. 65 Plot 64. Output Power 917MHz Ligh Channel 802.11n 5MHz Bandwidth, Chain 0. 65 Plot 65. Output Power 917MHz Ligh Channel 802.11n 5MHz Bandwidth, Chain 0. 66 Plot 66. Output Power 917MHz High Channel 802.11n 5MHz Bandwidth, Chain 0. 67 Plot 66. Output Power 917MHz High Channel 802.11n 10MHz Bandwidth, Chain 0. 67 Plot 67. Output Power 917MHz High Channel 802.11n 10MHz Bandwidth, Chain 0. 67 Plot 69. Output Power 912MHz Like Channel 802.11n 10MHz Bandwidth, Chain 0. 68 Plot 70. Output Power 912MHz High Channel 2802.11n 5MHz		
Plot 55. Occupied Bandwidth, 917MHz Ligh Channel 802.11g SMHz Bandwidth, Chain 0		
Plot 56. Output Power 907MHz Low Chamiel 802.11g SMHz Bandwidth, Chain 0 61 Plot 57. Output Power 917MHz Mid Channel 1, 802.12 g SMHz Bandwidth, Chain 0 62 Plot 59. Output Power 917MHz Low Channel 802.11g SMHz Bandwidth, Chain 0 62 Plot 60. Output Power 917MHz Low Channel 802.11g 10MHz Bandwidth, Chain 0 63 Plot 61. Output Power 917MHz Low Channel 802.11g 10MHz Bandwidth, Chain 0 64 Plot 63. Output Power 917MHz Ligh Channel 802.11g 10MHz Bandwidth, Chain 0 64 Plot 64. Output Power 917MHz Ligh Channel 802.11 n SMHz Bandwidth, Chain 0 65 Plot 65. Output Power 912MHz Low Channel 802.11 n SMHz Bandwidth, Chain 0 65 Plot 65. Output Power 912MHz Ligh Channel 802.11 n SMHz Bandwidth, Chain 0 66 Plot 66. Output Power 912MHz Ligh Channel 802.11 n SMHz Bandwidth, Chain 0 67 Plot 68. Output Power 912MHz Ligh Channel 802.11 n IOMHz Bandwidth, Chain 0 67 Plot 70. Output Power 912MHz Ligh Channel 802.11 n SMHz Bandwidth, Chain 0 68 Plot 70. Output Power 912MHz Ligh Channel 802.11 n SMHz Bandwidth, Chain 0 68 Plot 70. Output Power 912MHz Ligh Channel 802.11 n SMHz Bandwidth, Chain 1 69 Plot 70. Output Power 912MHz Ligh Channel 802.11 n SMHz Bandwidth, Chain 1 69 Plot 70. Output Power 912MHz Ligh Channel 802.11 n SMHz Bandwi		
Plot 57 Output Power 912MHz Mid Channel 1, 802.11 g 5MHz Bandwidth, Chain 0 61 Plot 58 Output Power 912MHz Lingh Channel, 802.11 g 5MHz Bandwidth, Chain 0 62 Plot 60 Output Power 912MHz Live Channel 802.11 g 10MHz Bandwidth, Chain 0 63 Plot 60 Output Power 912MHz Live Channel 802.11 g 10MHz Bandwidth, Chain 0 63 Plot 63 Output Power 917MHz Live Channel 802.11 g 20MHz Bandwidth, Chain 0 64 Plot 64 Output Power 917MHz Live Channel 802.11 g 20MHz Bandwidth, Chain 0 64 Plot 65 Output Power 917MHz Live Channel 802.11 n 20MHz Bandwidth, Chain 0 65 Plot 65 Output Power 917MHz Mid Channel 1, 802.11 n 5MHz Bandwidth, Chain 0 66 Plot 66 Output Power 912MHz Lov Channel 802.11 n 10MHz Bandwidth, Chain 0 67 Plot 69 Output Power 912MHz Lov Channel 802.11 n 10MHz Bandwidth, Chain 0 68 Plot 70 Output Power 917MHz Live Channel 802.11 n 20MHz Bandwidth, Chain 1 69 Plot 70 Output Power 917MHz Live Channel 802.11 n 20MHz Bandwidth, Chain 1 69 Plot 70 Output Power 917MHz Live Channel 802.11 n 20MHz Bandwidth, Chain 1 70 Plot 70 Output Power 917MHz Live Channel 802.11 n 20MHz Bandwidth Chain 1		
Plot 58. Output Power 917MHz Mid Channel, 802.11g SMHz Bandwidth, Chain 0 62 Plot 59. Output Power 912MHz Ligh Channel, 802.11g 10MHz Bandwidth, Chain 0 62 Plot 60. Output Power 917MHz High Channel 802.11g 10MHz Bandwidth, Chain 0 63 Plot 61. Output Power 917MHz High Channel 802.11g 20MHz Bandwidth, Chain 0 64 Plot 63. Output Power 917MHz High Channel 802.11g 20MHz Bandwidth, Chain 0 64 Plot 64. Output Power 917MHz Mid Channel 2, 802.11n 5MHz Bandwidth, Chain 0 65 Plot 65. Output Power 917MHz Mid Channel 2, 802.11n 5MHz Bandwidth, Chain 0 66 Plot 66. Output Power 912MHz Low Channel 802.11n 10MHz Bandwidth, Chain 0 66 Plot 66. Output Power 912MHz High Channel 802.11n 10MHz Bandwidth, Chain 0 67 Plot 67. Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth, Chain 0 68 Plot 70. Output Power 912MHz High Channel 802.11n 20MHz Bandwidth, Chain 1 69 Plot 73. Output Power 912MHz High Channel 802.11n 20MHz Bandwidth, Chain 1 69 Plot 73. Output Power 912MHz High Channel 802.11n 20MHz Bandwidth, Chain 1 70 Plot 73. Output Power 912MHz High Channel 802.11n 20MHz Bandwidth Chain 1		
Plot 59 Output Power 912MHz Low Channel 802.11g 5MHz Bandwidth, Chain 0. 62 Plot 60 Output Power 917MHz High Channel 802.11g 10MHz Bandwidth, Chain 0. 63 Plot 61 Output Power 917MHz High Channel 802.11g 20MHz Bandwidth, Chain 0. 64 Plot 63 Output Power 917MHz High Channel 802.11g 20MHz Bandwidth, Chain 0. 64 Plot 64 Output Power 917MHz High Channel 802.11g 20MHz Bandwidth, Chain 0. 65 Plot 65 Output Power 917MHz High Channel 802.11n 5MHz Bandwidth, Chain 0. 65 Plot 65 Output Power 917MHz High Channel 802.11n 5MHz Bandwidth, Chain 0. 66 Plot 66 Output Power 917MHz High Channel 802.11n 10MHz Bandwidth, Chain 0. 67 Plot 69 Output Power 917MHz High Channel 802.11n 10MHz Bandwidth, Chain 0. 67 Plot 70 Output Power 917MHz High Channel 802.11n 20MHz Bandwidth, Chain 0. 68 Plot 71 Output Power 917MHz High Channel 802.11n 20MHz Bandwidth, Chain 1. 69 Plot 73 Output Power 917MHz High Channel 802.11n 10MHz Bandwidth, Chain 1. 70 Plot 75 Output Power 917MHz High Channel 2802.11n 10MHz Bandwidth Chain 1. 70 Plot 75 Output Power 917MHz High Channel 2802.11n 10MHz Bandwidth Chain 1. 70 Plot 75 Output P		
Plot 60. Output Power 912MHz Low Channel 802.11g 10MHz Bandwidth, Chain 0. 63 Plot 61. Output Power 912MHz Low Channel 802.11g 20MHz Bandwidth, Chain 0. 64 Plot 63. Output Power 912MHz Low Channel 802.11g 20MHz Bandwidth, Chain 0. 64 Plot 63. Output Power 912MHz Low Channel 802.11s 5MHz Bandwidth, Chain 0. 65 Plot 65. Output Power 912MHz Mid Channel 1, 802.11n 5MHz Bandwidth, Chain 0. 65 Plot 65. Output Power 912MHz Mid Channel 1, 802.11n 5MHz Bandwidth, Chain 0. 66 Plot 65. Output Power 912MHz Low Channel 802.11n 10MHz Bandwidth, Chain 0. 67 Plot 69. Output Power 912MHz Liow Channel 802.11n 10MHz Bandwidth, Chain 0. 67 Plot 70. Output Power 917MHz High Channel 802.11n 20MHz Bandwidth, Chain 0. 68 Plot 70. Output Power 917MHz High Channel 802.11n 20MHz Bandwidth Chain 1. 69 Plot 73. Output Power 917MHz High Channel 2 802.11n 5MHz Bandwidth Chain 1. 70 Plot 73. Output Power 917MHz High Channel 2 802.11n 5MHz Bandwidth Chain 1. 70 Plot 73. Output Power 917MHz High Channel 2 802.11n 5MHz Bandwidth Chain 1. 70 Plot 74. Output Power 917MHz High Channel 2 802.11n 5MHz Bandwidth Chain 1		
Plot 61. Output Power 917MHz High Channel 802.11g 20MHz Bandwidth, Chain 0 63 Plot 63. Output Power 917MHz High Channel 802.11g 20MHz Bandwidth, Chain 0 64 Plot 64. Output Power 917MHz High Channel 802.11n 5MHz Bandwidth, Chain 0 65 Plot 65. Output Power 917MHz High Channel 802.11n 5MHz Bandwidth, Chain 0 66 Plot 65. Output Power 917MHz High Channel 802.11n 15MHz Bandwidth, Chain 0 66 Plot 65. Output Power 917MHz High Channel 802.11n 10MHz Bandwidth, Chain 0 66 Plot 69. Output Power 917MHz Lingh Channel 802.11n 10MHz Bandwidth, Chain 0 67 Plot 69. Output Power 917MHz Lingh Channel 802.11n 20MHz Bandwidth, Chain 0 68 Plot 7. Output Power 917MHz Lingh Channel 802.11n 20MHz Bandwidth, Chain 0 68 Plot 7. Output Power 917MHz High Channel 802.11n 5MHz Bandwidth Chain 1 69 Plot 7. Output Power 917MHz Mid Channel 1 802.11n 5MHz Bandwidth Chain 1 70 Plot 7. Output Power 912MHz Low Channel 2 802.11n 5MHz Bandwidth Chain 1 70 Plot 7. Output Power 912MHz Low Channel 2 802.11n 10MHz Bandwidth Chain 1 70 Plot 7. Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth Chain 1 71 Plot 79. Output Power 9		
Plot 62. Output Power 912MHz Low Channel 802.11g 20MHz Bandwidth, Chain 0. 64 Plot 63. Output Power 907MHz Low Channel 802.11n 5MHz Bandwidth, Chain 0. 65 Plot 64. Output Power 907MHz Low Channel 802.11n 5MHz Bandwidth, Chain 0. 65 Plot 65. Output Power 912MHz Mid Channel 1, 802.11n 5MHz Bandwidth, Chain 0. 66 Plot 65. Output Power 912MHz Low Channel 802.11n 10MHz Bandwidth, Chain 0. 66 Plot 68. Output Power 912MHz Low Channel 802.11n 10MHz Bandwidth, Chain 0. 67 Plot 59. Output Power 912MHz Low Channel 802.11n 10MHz Bandwidth, Chain 0. 67 Plot 70. Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth, Chain 0. 68 Plot 71. Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth, Chain 1. 69 Plot 73. Output Power 912MHz Low Channel 802.11n 5MHz Bandwidth Chain 1. 70 Plot 73. Output Power 912MHz Low Channel 802.11n 5MHz Bandwidth Chain 1. 70 Plot 75. Output Power 912MHz Ligh Channel 2 802.11n 10MHz Bandwidth Chain 1. 70 Plot 75. Output Power 912MHz Ligh Channel 2 802.11n 10MHz Bandwidth Chain 1. 71 Plot 75. Output Power 912MHz Ligh Channel 2 802.11n 10MHz Bandwidth Chain 1. 71 Plot 76. O		
Plot 63. Output Power 917MHz High Channel 802.11g 20MHz Bandwidth, Chain 0. 64 Plot 64. Output Power 917MHz Liow Channel 802.11n 5MHz Bandwidth, Chain 0. 65 Plot 65. Output Power 917MHz Mid Channel 1, 802.11n 5MHz Bandwidth, Chain 0. 66 Plot 65. Output Power 912MHz Mid Channel 2, 802.11n 5MHz Bandwidth, Chain 0. 66 Plot 66. Output Power 912MHz Low Channel 802.11n 10MHz Bandwidth, Chain 0. 67 Plot 69. Output Power 912MHz Low Channel 802.11n 10MHz Bandwidth, Chain 0. 67 Plot 70. Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth, Chain 0. 68 Plot 71. Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth, Chain 0. 68 Plot 73. Output Power 912MHz Kigh Channel 802.11n 20MHz Bandwidth, Chain 1. 69 Plot 73. Output Power 912MHz Kigh Channel 802.11n 5MHz Bandwidth Chain 1. 70 Plot 75. Output Power 912MHz Kigh Channel 2 802.11n 5MHz Bandwidth Chain 1. 70 Plot 75. Output Power 912MHz Kigh Channel 2 802.11n 10MHz Bandwidth Chain 1. 71 Plot 75. Output Power 912MHz Kigh Channel 2 802.11n 10MHz Bandwidth Chain 1. 71 Plot 78. Output Power 912MHz Kigh Channel 802.11n 20MHz Bandwidth Chain 1. 72 Plot 79. Output Power 912MHz Kigh Channel 802.11g 20MHz Bandwidth Chain 1. 72 Plot 79. Output Power 912MHz Kigh Channel 802.11g, 5MHz Bandwidth Chain 1. 72	Plot 62. Output Power 912MHz Low Channel 802.11g 20MHz Bandwidth, Chain 0.	
Plot 64 Output Power 907MHz Low Channel 802.11n 5MHz Bandwidth, Chain 0. 65 Plot 65 Output Power 912MHz Mid Channel 1, 802.11n 5MHz Bandwidth, Chain 0. 66 Plot 65 Output Power 917MHz Mid Channel 2, 802.11n 5MHz Bandwidth, Chain 0. 66 Plot 65 Output Power 917MHz High Channel 802.11n 10MHz Bandwidth, Chain 0. 67 Plot 69 Output Power 917MHz High Channel 802.11n 10MHz Bandwidth, Chain 0. 67 Plot 70 Output Power 917MHz High Channel 802.11n 10MHz Bandwidth, Chain 0. 68 Plot 7.1 Output Power 917MHz High Channel 802.11n 20MHz Bandwidth, Chain 0. 68 Plot 7.2 Output Power 907MHz Low Channel 802.11n 5MHz Bandwidth Chain 1. 69 Plot 7.3 Output Power 917MHz High Channel 2 802.11n 5MHz Bandwidth Chain 1. 70 Plot 7.5 Output Power 917MHz High Channel 2 802.11n 15MHz Bandwidth Chain 1. 70 Plot 7.5 Output Power 917MHz High Channel 2 802.11n 10MHz Bandwidth Chain 1. 71 Plot 7.6 Output Power 917MHz High Channel 2 802.11n 10MHz Bandwidth Chain 1. 71 Plot 7.0 Plot 74.0 Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth Chain 1. 71 Plot 75 Output Power 912MHz Low Channel 802.11g, 5MHz Bandwidth Chain 1. 72 <td< td=""><td></td><td></td></td<>		
Plot 65. Output Power 912MHz Mid Channel 1, 802.11n SMHz Bandwidth, Chain 0 65 Plot 66. Output Power 922MHz High Channel 802.11n SMHz Bandwidth, Chain 0 66 Plot 67. Output Power 912MHz Low Channel 802.11n 10MHz Bandwidth, Chain 0 67 Plot 70. Output Power 912MHz Low Channel 802.11n 10MHz Bandwidth, Chain 0 67 Plot 70. Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth, Chain 0 68 Plot 71. Output Power 912MHz Lick Channel 802.11n 20MHz Bandwidth, Chain 1 69 Plot 73. Output Power 907MHz Low Channel 802.11n SMHz Bandwidth Chain 1 69 Plot 73. Output Power 907MHz Low Channel 2 802.11n SMHz Bandwidth Chain 1 70 Plot 75. Output Power 912MHz High Channel 2 802.11n SMHz Bandwidth Chain 1 70 Plot 76. Output Power 912MHz Lick Channel 2 802.11n 10MHz Bandwidth Chain 1 71 Plot 75. Output Power 912MHz Low Channel 2 802.11n 10MHz Bandwidth Chain 1 71 Plot 76. Output Power 912MHz High Channel 2 802.11n 10MHz Bandwidth Chain 1 72 Plot 76. Output Power 912MHz Low Channel 802.11g 20MHz Bandwidth Chain 1 72 Plot 76. Output Power 917MHz High Channel 802.11g, SMHz Bandwidth Chain 1 72 Plot 76. Output Powe		
Plot 66 Output Power 917MHz Mid Channel 2, 802.11n 5MHz Bandwidth, Chain 0 66 Plot 67 Output Power 912MHz Low Channel 802.11n 10MHz Bandwidth, Chain 0 67 Plot 68 Output Power 917MHz High Channel 802.11n 10MHz Bandwidth, Chain 0 67 Plot 70 Output Power 917MHz High Channel 802.11n 20MHz Bandwidth, Chain 0 68 Plot 71 Output Power 917MHz High Channel 802.11n 20MHz Bandwidth, Chain 0 68 Plot 72 Output Power 907MHz Low Channel 802.11n 5MHz Bandwidth, Chain 1 69 Plot 73 Output Power 917MHz High Channel 2 802.11n 5MHz Bandwidth Chain 1 70 Plot 75 Output Power 917MHz High Channel 2 802.11n 5MHz Bandwidth Chain 1 70 Plot 75 Output Power 917MHz High Channel 2 802.11n 10MHz Bandwidth Chain 1 71 Plot 75 Output Power 912MHz Low Channel 2 802.11n 10MHz Bandwidth Chain 1 71 Plot 75 Output Power 912MHz Low Channel 2 802.11n 20MHz Bandwidth Chain 1 71 Plot 75 Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth Chain 1 72 Plot 78 Output Power 912MHz Low Channel 802.11g. 5MHz Bandwidth Chain 1 72 Plot 79 Output Power 912MHz Low Channel 802.11g. 5MHz Bandwidth (1-18GHz) 83 Plot 88 Radiated Spurious, 912M		
Plot 7. Output Power 912MHz High Channel 802.11n 10MHz Bandwidth, Chain 0		
Plot 68. Output Power 912MHz Low Channel 802.11n 10MHz Bandwidth, Chain 0. 67 Plot 69. Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth, Chain 0. 68 Plot 70. Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth, Chain 0. 68 Plot 72. Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth, Chain 0. 68 Plot 72. Output Power 912MHz Low Channel 802.11n 5MHz Bandwidth, Chain 1. 69 Plot 73. Output Power 912MHz Mid Channel 2 802.11n 5MHz Bandwidth Chain 1. 70 Plot 75. Output Power 912MHz Ligh Channel 2 802.11n 5MHz Bandwidth Chain 1. 70 Plot 75. Output Power 912MHz High Channel 2 802.11n 10MHz Bandwidth Chain 1. 71 Plot 70. Output Power 912MHz High Channel 2 802.11n 10MHz Bandwidth Chain 1. 71 Plot 78. Output Power 917MHz High Channel 2 802.11n 20MHz Bandwidth Chain 1. 72 Plot 78. Output Power 917MHz High Channel 802.11n 20MHz Bandwidth Chain 1. 72 Plot 78. Output Power 917MHz High Channel 802.11g.20MHz Bandwidth Chain 1. 72 Plot 88. Radiated Spurious, 912MHz Low Channel, 802.11g, SMHz Bandwidth Chain 1. 72 Plot 88. Radiated Spurious, 912MHz Low Channel, 802.11g, SMHz Bandwidth (1-18GHz). 83 Plot 88. Radiated Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth (1-18GHz). 84 Plot 88. Radiated Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth (1-18GHz		
Plot 69. Output Power 917MHz High Channel 802.11n 10MHz Bandwidth, Chain 0		
Plot 70. Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth, Chain 0. 68 Plot 71. Output Power 917MHz High Channel 802.11n 20MHz Bandwidth, Chain 0. 68 Plot 73. Output Power 917MHz Mid Channel 802.11n 5MHz Bandwidth Chain 1. 69 Plot 73. Output Power 912MHz Mid Channel 2 802.11n 5MHz Bandwidth Chain 1. 70 Plot 74. Output Power 912MHz Low Channel 2 802.11n 5MHz Bandwidth Chain 1. 70 Plot 75. Output Power 912MHz Low Channel 2 802.11n 10MHz Bandwidth Chain 1. 70 Plot 76. Output Power 912MHz Low Channel 2 802.11n 10MHz Bandwidth Chain 1. 71 Plot 77. Output Power 912MHz Low Channel 2 802.11n 10MHz Bandwidth Chain 1. 72 Plot 78. Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth Chain 1. 72 Plot 79. Output Power 912MHz Low Channel 802.11g, 5MHz Bandwidth (1-18GHz). 83 Plot 81. Radiated Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth (1-18GHz). 84 Plot 81. Radiated Spurious, 912MHz Low Channel, 802.11g, 5MHz Bandwidth (1-18GHz). 84 Plot 82. Radiated Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth (1-18GHz). 85 Plot 83. Radiated Spurious, 912MHz Low Channel, 802.11g, 20MHz Bandwidth (1-18GHz). 85		
Plot 71. Output Power 917MHz High Channel 802.11n 20MHz Bandwidth, Chain 0. 68 Plot 72. Output Power 907MHz Low Channel 802.11n 5MHz Bandwidth Chain 1. 69 Plot 73. Output Power 912MHz Mid Channel 2 802.11n 5MHz Bandwidth Chain 1. 70 Plot 75. Output Power 912MHz High Channel 2 802.11n 5MHz Bandwidth Chain 1. 70 Plot 75. Output Power 912MHz Low Channel 2 802.11n 10MHz Bandwidth Chain 1. 71 Plot 75. Output Power 912MHz Low Channel 2 802.11n 10MHz Bandwidth Chain 1. 71 Plot 77. Output Power 912MHz Low Channel 2 802.11n 20MHz Bandwidth Chain 1. 72 Plot 78. Output Power 917MHz High Channel 802.11n 20MHz Bandwidth Chain 1. 72 Plot 79. Output Power 917MHz High Channel 802.11g, SMHz Bandwidth (1-18GHz). 83 Plot 81. Radiated Spurious, 912MHz Mid Channel 1, 802.11g, SMHz Bandwidth (1-18GHz). 83 Plot 82. Radiated Spurious, 912MHz Mid Channel, 802.11g, SMHz Bandwidth (1-18GHz). 84 Plot 84. Radiated Spurious, 912MHz Low Channel, 802.11g, 20MHz Bandwidth (1-18GHz). 84 Plot 84. Radiated Spurious, 912MHz Low Channel, 802.11g, 20MHz Bandwidth (1-18GHz). 86 Plot 84. Radiated Spurious, 912MHz Low Channel, 802.11g, 20MHz Bandwidth (1-18GHz). 86 </td <td></td> <td></td>		
Plot 72. Output Power 907MHz Low Channel 802.11n SMHz Bandwidth Chain 1 69 Plot 73. Output Power 912MHz Mid Channel 1 802.11n SMHz Bandwidth Chain 1 70 Plot 75. Output Power 912MHz Lid Channel 2 802.11n SMHz Bandwidth Chain 1 70 Plot 75. Output Power 912MHz Low Channel 2 802.11n 10MHz Bandwidth Chain 1 70 Plot 75. Output Power 912MHz Low Channel 2 802.11n 10MHz Bandwidth Chain 1 71 Plot 77. Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth Chain 1 72 Plot 78. Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth Chain 1 72 Plot 79. Output Power 912MHz Low Channel 802.11g, SMHz Bandwidth Chain 1 72 Plot 80. Radiated Spurious, 907MHz Low Channel 802.11g, SMHz Bandwidth Chain 1 72 Plot 81. Radiated Spurious, 912MHz Mid Channel 1, 802.11g, SMHz Bandwidth (1-18GHz) 83 Plot 82. Radiated Spurious, 912MHz Mid Channel 2, 802.11g, 10MHz Bandwidth (1-18GHz) 84 Plot 83. Radiated Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth (1-18GHz) 84 Plot 84. Radiated Spurious, 912MHz Low Channel, 802.11g, 20MHz Bandwidth (1-18GHz) 86 Plot 88. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz) 86		
Plot 73. Output Power 912MHz Mid Channel 1 802.11n 5MHz Bandwidth Chain 1. 69 Plot 74. Output Power 917MHz Mid Channel 2 802.11n 5MHz Bandwidth Chain 1. 70 Plot 75. Output Power 912MHz Low Channel 2 802.11n 10MHz Bandwidth Chain 1. 70 Plot 76. Output Power 912MHz Low Channel 2 802.11n 10MHz Bandwidth Chain 1. 71 Plot 77. Output Power 917MHz High Channel 2 802.11n 10MHz Bandwidth Chain 1. 71 Plot 79. Output Power 917MHz High Channel 802.11n 20MHz Bandwidth Chain 1. 72 Plot 80. Radiated Spurious, 907MHz Low Channel 802.11g, 5MHz Bandwidth Chain 1. 72 Plot 80. Radiated Spurious, 907MHz Mid Channel 1, 802.11g, 5MHz Bandwidth (1-18GHz). 83 Plot 81. Radiated Spurious, 912MHz Mid Channel 2, 802.11g, 5MHz Bandwidth (1-18GHz). 84 Plot 83. Radiated Spurious, 912MHz High Channel 802.11g, 5MHz Bandwidth (1-18GHz). 84 Plot 84. Radiated Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth (1-18GHz). 84 Plot 85. Radiated Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth (1-18GHz). 85 Plot 86. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz). 86 Plot 87. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz). 86 Plot 88. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz). 86 Plot 88. Radiated Spuriou		
Plot 74. Output Power 917MHz Mid Channel 2 802.11n 5MHz Bandwidth Chain 1. 70 Plot 75. Output Power 912MHz High Channel 2 802.11n 10MHz Bandwidth Chain 1. 71 Plot 76. Output Power 912MHz Low Channel 2 802.11n 10MHz Bandwidth Chain 1. 71 Plot 77. Output Power 917MHz High Channel 2 802.11n 10MHz Bandwidth Chain 1. 71 Plot 79. Output Power 917MHz High Channel 802.11n 20MHz Bandwidth Chain 1. 72 Plot 79. Output Power 917MHz Kigh Channel 802.11g, SMHz Bandwidth Chain 1. 72 Plot 80. Radiated Spurious, 912MHz Low Channel, 802.11g, SMHz Bandwidth (1-18GHz). 83 Plot 81. Radiated Spurious, 912MHz Mid Channel 2, 802.11g, SMHz Bandwidth (1-18GHz). 84 Plot 83. Radiated Spurious, 912MHz High Channel, 802.11g, SMHz Bandwidth (1-18GHz). 84 Plot 84. Radiated Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth (1-18GHz). 85 Plot 85. Radiated Spurious, 912MHz Low Channel, 802.11g, 20MHz Bandwidth (1-18GHz). 86 Plot 87. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz). 86 Plot 88. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz). 86 Plot 88. Radiated Spurious, 917MHz High Channel, 802.11n, 5MHz Bandwidth (1-18GHz).<		
Plot 75. Output Power 922MHz High Channel 2 802.11n 5MHz Bandwidth Chain 1. 70 Plot 76. Output Power 912MHz Low Channel 2 802.11n 10MHz Bandwidth Chain 1. 71 Plot 77. Output Power 917MHz High Channel 2 802.11n 20MHz Bandwidth Chain 1. 71 Plot 78. Output Power 917MHz High Channel 802.11n 20MHz Bandwidth Chain 1. 72 Plot 79. Output Power 917MHz High Channel 802.11n 20MHz Bandwidth Chain 1. 72 Plot 80. Radiated Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth (1-18GHz). 83 Plot 81. Radiated Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth (1-18GHz). 84 Plot 83. Radiated Spurious, 912MHz High Channel, 802.11g, 10MHz Bandwidth (1-18GHz). 84 Plot 84. Radiated Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth (1-18GHz). 85 Plot 85. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz). 85 Plot 87. Radiated Spurious, 917MHz Ligh Channel, 802.11g, 20MHz Bandwidth (1-18GHz). 86 Plot 87. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz). 86 Plot 88. Radiated Spurious, 917MHz High Channel, 802.11g, 5MHz Bandwidth (1-18GHz). 87 Plot 89. Radiated Spurious, 912MHz Low Channel, 802.11n, 5MHz Bandwidth (1		
Plot 76. Output Power 912MHz Low Channel 2 802.11n 10MHz Bandwidth Chain 1. 71 Plot 77. Output Power 917MHz High Channel 2 802.11n 10MHz Bandwidth Chain 1. 71 Plot 78. Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth Chain 1. 72 Plot 79. Output Power 917MHz High Channel 802.11n 20MHz Bandwidth Chain 1. 72 Plot 80. Radiated Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth (1-18GHz). 83 Plot 81. Radiated Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth (1-18GHz). 84 Plot 83. Radiated Spurious, 912MHz High Channel, 802.11g, 5MHz Bandwidth (1-18GHz). 84 Plot 84. Radiated Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth (1-18GHz). 84 Plot 85. Radiated Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth (1-18GHz). 85 Plot 86. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz). 86 Plot 87. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz). 86 Plot 88. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz). 86 Plot 88. Radiated Spurious, 917MHz High Channel, 802.11n, 5MHz Bandwidth (1-18GHz). 86 Plot 98. Radiated Spurious, 917MHz High Channel, 802.11n, 5MHz Bandw		
Plot 78.Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth Chain 1.72Plot 79.Output Power 917MHz High Channel 802.11n 20MHz Bandwidth Chain 1.72Plot 80.Radiated Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth (1-18GHz).83Plot 81.Radiated Spurious, 912MHz Mid Channel 2, 802.11g, 5MHz Bandwidth (1-18GHz).83Plot 82.Radiated Spurious, 912MHz Mid Channel, 802.11g, 5MHz Bandwidth (1-18GHz).84Plot 83.Radiated Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth (1-18GHz).84Plot 84.Radiated Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth (1-18GHz).85Plot 85.Radiated Spurious, 912MHz Low Channel, 802.11g, 20MHz Bandwidth (1-18GHz).86Plot 86.Radiated Spurious, 912MHz Ligh Channel, 802.11g, 20MHz Bandwidth (1-18GHz).86Plot 87.Radiated Spurious, 912MHz Low Channel, 802.11g, 20MHz Bandwidth (1-18GHz).86Plot 88.Radiated Spurious, 912MHz Mid Channel, 802.11g, 20MHz Bandwidth (1-18GHz).87Plot 89.Radiated Spurious, 912MHz Mid Channel 2, 802.11n, 5MHz Bandwidth (1-18GHz).87Plot 90.Radiated Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth (1-18GHz).87Plot 91.Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz).88Plot 92.Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz).88Plot 94.Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz).89Plot 95.Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz).89Plot 9		
Plot 79. Output Power 917MHz High Channel 802.11n 20MHz Bandwidth Chain 1. 72 Plot 80. Radiated Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth (1-18GHz) 83 Plot 81. Radiated Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth (1-18GHz) 84 Plot 82. Radiated Spurious, 912MHz Mid Channel 2, 802.11g, 5MHz Bandwidth (1-18GHz) 84 Plot 83. Radiated Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth (1-18GHz) 84 Plot 84. Radiated Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth (1-18GHz) 85 Plot 85. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz) 85 Plot 86. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz) 86 Plot 87. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz) 86 Plot 88. Radiated Spurious, 917MHz Mid Channel, 802.11n, 5MHz Bandwidth (1-18GHz) 87 Plot 89. Radiated Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth (1-18GHz) 87 Plot 90. Radiated Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth (1-18GHz) 88 Plot 91. Radiated Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth (1-18GHz) 88 Plot 92. Radiated Spurious, 917MHz High Channel, 802	Plot 77. Output Power 917MHz High Channel 2 802.11n 10MHz Bandwidth Chain 1	71
Plot 79. Output Power 917MHz High Channel 802.11n 20MHz Bandwidth Chain 1. 72 Plot 80. Radiated Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth (1-18GHz) 83 Plot 81. Radiated Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth (1-18GHz) 84 Plot 82. Radiated Spurious, 912MHz Mid Channel 2, 802.11g, 5MHz Bandwidth (1-18GHz) 84 Plot 83. Radiated Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth (1-18GHz) 84 Plot 84. Radiated Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth (1-18GHz) 85 Plot 85. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz) 85 Plot 86. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz) 86 Plot 87. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz) 86 Plot 88. Radiated Spurious, 917MHz Mid Channel, 802.11n, 5MHz Bandwidth (1-18GHz) 87 Plot 89. Radiated Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth (1-18GHz) 87 Plot 90. Radiated Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth (1-18GHz) 88 Plot 91. Radiated Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth (1-18GHz) 88 Plot 92. Radiated Spurious, 917MHz High Channel, 802	Plot 78. Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth Chain 1	72
Plot 81. Radiated Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth (1-18GHz)83Plot 82. Radiated Spurious, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth (1-18GHz)84Plot 83. Radiated Spurious, 922MHz High Channel, 802.11g, 5MHz Bandwidth (1-18GHz)84Plot 84. Radiated Spurious, 917MHz Liow Channel, 802.11g, 10MHz Bandwidth (1-18GHz)85Plot 85. Radiated Spurious, 917MHz High Channel, 802.11g, 10MHz Bandwidth (1-18GHz)85Plot 86. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz)86Plot 87. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz)86Plot 88. Radiated Spurious, 917MHz High Channel, 802.11n, 5MHz Bandwidth (1-18GHz)86Plot 89. Radiated Spurious, 912MHz Low Channel, 802.11n, 5MHz Bandwidth (1-18GHz)87Plot 90. Radiated Spurious, 912MHz Mid Channel 2, 802.11n, 5MHz Bandwidth (1-18GHz)87Plot 91. Radiated Spurious, 912MHz Mid Channel, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 92. Radiated Spurious, 912MHz Low Channel, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 93. Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 94. Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 95. Radiated Spurious, 912MHz Low Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 94. Radiated Spurious, 912MHz Low Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 95. Radiated Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 96. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 092Plot 97. Receiver Spurious Emission, 30MHz – 1 GHz		
Plot 82. Radiated Spurious, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth (1-18GHz)84Plot 83. Radiated Spurious, 922MHz High Channel, 802.11g, 10MHz Bandwidth (1-18GHz)84Plot 84. Radiated Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth (1-18GHz)85Plot 85. Radiated Spurious, 917MHz High Channel, 802.11g, 10MHz Bandwidth (1-18GHz)85Plot 86. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz)86Plot 87. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz)86Plot 87. Radiated Spurious, 907MHz Low Channel, 802.11g, 20MHz Bandwidth (1-18GHz)87Plot 88. Radiated Spurious, 917MHz Mid Channel, 802.11n, 5MHz Bandwidth (1-18GHz)87Plot 89. Radiated Spurious, 912MHz Mid Channel 2, 802.11n, 5MHz Bandwidth (1-18GHz)87Plot 90. Radiated Spurious, 917MHz Mid Channel, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 91. Radiated Spurious, 912MHz Low Channel, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 92. Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 93. Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 94. Radiated Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 95. Radiated Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 96. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 092Plot 97. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 092Plot 98. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 193Plot 99. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 193Plot 99.	Plot 80. Radiated Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth (1-18GHz)	83
Plot 83. Radiated Spurious, 922MHz High Channel, 802.11g, 5MHz Bandwidth (1-18GHz)84Plot 84. Radiated Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth (1-18GHz)85Plot 85. Radiated Spurious, 917MHz High Channel, 802.11g, 10MHz Bandwidth (1-18GHz)85Plot 86. Radiated Spurious, 912MHz Low Channel, 802.11g, 20MHz Bandwidth (1-18GHz)86Plot 87. Radiated Spurious, 907MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz)86Plot 88. Radiated Spurious, 907MHz Low Channel, 802.11n, 5MHz Bandwidth (1-18GHz)87Plot 89. Radiated Spurious, 917MHz Mid Channel 1, 802.11n, 5MHz Bandwidth (1-18GHz)87Plot 90. Radiated Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth (1-18GHz)87Plot 91. Radiated Spurious, 917MHz High Channel, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 92. Radiated Spurious, 912MHz Low Channel, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 93. Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 94. Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 95. Radiated Spurious, 912MHz Low Channel, 802.11n, 20MHz Bandwidth (1-18GHz)89Plot 96. Receiver Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 96. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 092Plot 97. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 092Plot 98. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 99. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 100. Conducted Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95 <tr< td=""><td>Plot 81. Radiated Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth (1-18GHz)</td><td> 83</td></tr<>	Plot 81. Radiated Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth (1-18GHz)	83
Plot 84.Radiated Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth (1-18GHz)85Plot 85.Radiated Spurious, 917MHz High Channel, 802.11g, 10MHz Bandwidth (1-18GHz)85Plot 86.Radiated Spurious, 912MHz Low Channel, 802.11g, 20MHz Bandwidth (1-18GHz)86Plot 87.Radiated Spurious, 907MHz Low Channel, 802.11g, 20MHz Bandwidth (1-18GHz)86Plot 88.Radiated Spurious, 907MHz Low Channel, 802.11n, 5MHz Bandwidth (1-18GHz)87Plot 89.Radiated Spurious, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth (1-18GHz)87Plot 90.Radiated Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 91.Radiated Spurious, 912MHz Low Channel, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 92.Radiated Spurious, 912MHz Low Channel, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 92.Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 93.Radiated Spurious, 917MHz High Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 94.Radiated Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 95.Radiated Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 96.Receiver Spurious Emission, 30MHz – 1 GHz, Chain 092Plot 97.Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 092Plot 98.Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 99.Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 99.Receiver Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz	Plot 82. Radiated Spurious, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth (1-18GHz)	84
Plot 85. Radiated Spurious, 917MHz High Channel, 802.11g, 10MHz Bandwidth (1-18GHz)85Plot 86. Radiated Spurious, 912MHz Low Channel, 802.11g, 20MHz Bandwidth (1-18GHz)86Plot 87. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz)86Plot 88. Radiated Spurious, 907MHz Low Channel, 802.11n, 5MHz Bandwidth (1-18GHz)87Plot 89. Radiated Spurious, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth (1-18GHz)87Plot 90. Radiated Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth (1-18GHz)87Plot 91. Radiated Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 92. Radiated Spurious, 912MHz Low Channel, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 93. Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 94. Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 95. Radiated Spurious, 912MHz High Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 94. Radiated Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 95. Radiated Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 96. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 092Plot 97. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 99. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 99. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 100. Conducted Spurious, 912MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 101. Conducted Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)<	Plot 83. Radiated Spurious, 922MHz High Channel, 802.11g, 5MHz Bandwidth (1-18GHz)	84
Plot 86.Radiated Spurious, 912MHz Low Channel, 802.11g, 20MHz Bandwidth (1-18GHz)86Plot 87.Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz)86Plot 88.Radiated Spurious, 907MHz Low Channel, 802.11n, 5MHz Bandwidth (1-18GHz)87Plot 89.Radiated Spurious, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth (1-18GHz)87Plot 90.Radiated Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 91.Radiated Spurious, 912MHz Low Channel, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 92.Radiated Spurious, 912MHz Low Channel, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 92.Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 93.Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 94.Radiated Spurious, 912MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 95.Radiated Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 95.Radiated Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 96.Receiver Spurious Emission, 30MHz – 1 GHz, Chain 092Plot 97.Receiver Spurious Emission, 30MHz – 1 GHz, Chain 092Plot 98.Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 99.Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 100.Conducted Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 101.Conducted Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwid		
Plot 87.Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz)86Plot 88.Radiated Spurious, 907MHz Low Channel, 802.11n, 5MHz Bandwidth (1-18GHz)87Plot 89.Radiated Spurious, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth (1-18GHz)87Plot 90.Radiated Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 91.Radiated Spurious, 922MHz High Channel, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 92.Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 93.Radiated Spurious, 917MHz High Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 94.Radiated Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 95.Radiated Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 96.Receiver Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 97.Receiver Spurious Emission, 30MHz – 1 GHz, Chain 092Plot 98.Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 99.Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 100.Conducted Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 101.Conducted Spurious, 917MHz Mid Channel 1, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 102.Conducted Spurious, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96Plot 103.Conducted Spurious, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96 <td></td> <td></td>		
Plot 88. Radiated Spurious, 907MHz Low Channel, 802.11n, 5MHz Bandwidth (1-18GHz)87Plot 89. Radiated Spurious, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth (1-18GHz)87Plot 90. Radiated Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 91. Radiated Spurious, 922MHz High Channel, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 92. Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 93. Radiated Spurious, 917MHz High Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 94. Radiated Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 95. Radiated Spurious, 912MHz Low Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 96. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 092Plot 97. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 092Plot 98. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 193Plot 99. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 100. Conducted Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 101. Conducted Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 102. Conducted Spurious, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96Plot 103. Conducted Spurious, 912MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96		
Plot 89. Radiated Spurious, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth (1-18GHz)87Plot 90. Radiated Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 91. Radiated Spurious, 922MHz High Channel, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 92. Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 93. Radiated Spurious, 917MHz High Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 94. Radiated Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 95. Radiated Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 96. Receiver Spurious P17MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 97. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 092Plot 98. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 99. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 100. Conducted Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 101. Conducted Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 102. Conducted Spurious, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 103. Conducted Spurious, 912MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96		
Plot 90. Radiated Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 91. Radiated Spurious, 922MHz High Channel, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 92. Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 93. Radiated Spurious, 917MHz High Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 94. Radiated Spurious, 912MHz Low Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 95. Radiated Spurious, 912MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 96. Receiver Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 97. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 092Plot 97. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 092Plot 99. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 99. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 100. Conducted Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 101. Conducted Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 102. Conducted Spurious, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96Plot 103. Conducted Spurious, 912MHz High Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96		
Plot 91. Radiated Spurious, 922MHz High Channel, 802.11n, 5MHz Bandwidth (1-18GHz)88Plot 92. Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 93. Radiated Spurious, 917MHz High Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 94. Radiated Spurious, 912MHz Low Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 95. Radiated Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 96. Receiver Spurious P17MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 97. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 092Plot 98. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 99. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 193Plot 99. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 100. Conducted Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 101. Conducted Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 102. Conducted Spurious, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96Plot 103. Conducted Spurious, 922MHz High Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96		
Plot 92. Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz)		
Plot 93. Radiated Spurious, 917MHz High Channel, 802.11n, 10MHz Bandwidth (1-18GHz)89Plot 94. Radiated Spurious, 912MHz Low Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 95. Radiated Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 96. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 092Plot 97. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 092Plot 98. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 193Plot 99. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 100. Conducted Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 101. Conducted Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 102. Conducted Spurious, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96Plot 103. Conducted Spurious, 917MHz Mid Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96		
Plot 94. Radiated Spurious, 912MHz Low Channel, 802.11n, 20MHz Bandwidth (1-18GHz)		
Plot 95. Radiated Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)90Plot 96. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 092Plot 97. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 092Plot 98. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 193Plot 99. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 99. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 100. Conducted Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 101. Conducted Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 102. Conducted Spurious, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96Plot 103. Conducted Spurious, 922MHz High Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96		
Plot 96. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 092Plot 97. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 092Plot 98. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 193Plot 99. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 99. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 100. Conducted Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 101. Conducted Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 102. Conducted Spurious, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96Plot 103. Conducted Spurious, 922MHz High Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96		
Plot 97. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 092Plot 98. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 193Plot 99. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 100. Conducted Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 101. Conducted Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 102. Conducted Spurious, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96Plot 103. Conducted Spurious, 922MHz High Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96		
Plot 98. Receiver Spurious Emission, 30MHz – 1 GHz, Chain 193Plot 99. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 193Plot 100. Conducted Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 101. Conducted Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 102. Conducted Spurious, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96Plot 103. Conducted Spurious, 922MHz High Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96		
Plot 99. Receiver Spurious Emission, 1 GHz – 3GHz, Chain 193Plot 100. Conducted Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 101. Conducted Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)95Plot 102. Conducted Spurious, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96Plot 103. Conducted Spurious, 922MHz High Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)96		
Plot 100. Conducted Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)		
Plot 101. Conducted Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)		
Plot 102. Conducted Spurious, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)		
Plot 103. Conducted Spurious, 922MHz High Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)		
Plot 104. Conducted Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth, Chain 0 (30MHz-10GHz)		
	FIOU 104. Conducted Spurious, 912/0112 Low Channel, 802.11g, 10/01HZ Bandwidth, Chain 0 (30/01HZ-10GHZ)	97

Plot 110. Conducted Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)...... 100 Plot 111. Conducted Spurious, 922MHz High Channel, 802.11n, 5MHz Bandwidth, Chain 0 (30MHz-10GHz) 100 Plot 112. Conducted Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth, Chain 0 (30MHz-10GHz) 101 Plot 113. Conducted Spurious, 917MHz High Channel, 802.11n, 10MHz Bandwidth, Chain 0 (30MHz-10GHz) 101 Plot 115. Conducted Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth, Chain 0 (30MHz-10GHz) 102 Plot 116. Conducted Spurious, 907MHz Low Channel, 802.11n, 5MHz Bandwidth, Chain 1 (30MHz-10GHz) 103 Plot 117. Conducted Spurious, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth, Chain 1 (30MHz-10GHz)...... 103 Plot 118. Conducted Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth, Chain 1 (30MHz-10GHz)...... 104 Plot 119. Conducted Spurious, 922MHz High Channel, 802.11n, 5MHz Bandwidth, Chain 1 (30MHz-10GHz) 104 Plot 121. Conducted Spurious, 917MHz High Channel, 802.11n, 10MHz Bandwidth, Chain 1 (30MHz-10GHz) 105 Plot 123. Conducted Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth, Chain 1 (30MHz-10GHz) 106 Plot 124. Conducted Band Edge, 802.11g 5MHz Mode Low – Chain 0..... 107 Plot 125. Conducted Band Edge, 802.11g 5MHz Mode High – Chain 0...... 107 Plot 126. Conducted Band Edge, 802.11g 10MHz Mode Low - Chain 0...... 108 Plot 127. Conducted Band Edge, 802.11g 10MHz Mode High – Chain 0...... 108 Plot 128. Conducted Band Edge, 802.11g 20MHz Mode Low - Chain 0...... 109 Plot 129. Conducted Band Edge, 802.11g 20MHz Mode High – Chain 0...... 109 Plot 130. Conducted Band Edge, 802.11n 5MHz Mode Low – Chain 0..... 110 Plot 131. Conducted Band Edge, 802.11n 5MHz Mode High - Chain 0...... 110 Plot 132. Conducted Band Edge, 802.11n 10MHz Mode Low – Chain 0...... 111 Plot 133. Conducted Band Edge, 802.11n 10MHz Mode High – Chain 0...... 111 Plot 134. Conducted Band Edge, 802.11n 20MHz Mode Low - Chain 0...... 112 Plot 135. Conducted Band Edge, 802.11n 20MHz Mode High - Chain 0 112 Plot 136. Conducted Band Edge, 802.11n 5MHz Mode Low – Chain 1..... 113 Plot 137. Conducted Band Edge, 802.11n 5MHz Mode High – Chain 1 113 Plot 138. Conducted Band Edge, 802.11n 10MHz Mode Low – Chain 1..... 114 Plot 139. Conducted Band Edge, 802.11n 10MHz Mode High – Chain 1 114 Plot 140. Conducted Band Edge, 802.11n 20MHz Mode Low – Chain 1..... 115 Plot 141. Conducted Band Edge, 802.11n 20MHz Mode High – Chain 1 115 Plot 143. Power Spectral Density, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth, Chain 0...... 121 Plot 144. Power Spectral Density, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 122 Plot 145. Power Spectral Density, 922MHz High Channel, 802.11g, 5MHz Bandwidth, Chain 0...... 122 Plot 147. Power Spectral Density, 917MHz High Channel, 802.11g, 10MHz Bandwidth, Chain 0...... 123 Plot 148. Power Spectral Density, 912MHz Low Channel, 802.11g, 20MHz Bandwidth, Chain 0 124 Plot 150. Power Spectral Density, 907MHz Low Channel, 802.11n, 5MHz Bandwidth, Chain 0 125 Plot 151. Power Spectral Density, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth, Chain 0...... 125 Plot 152. Power Spectral Density, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth, Chain 0...... 126 Plot 153. Power Spectral Density, 922MHz High Channel, 802.11n, 5MHz Bandwidth, Chain 0...... 126 Plot 154. Power Spectral Density, 912MHz Low Channel, 802.11n, 10MHz Bandwidth, Chain 0 127 Plot 156. Power Spectral Density, 912MHz Low Channel, 802.11n, 20MHz Bandwidth, Chain 0 128 Plot 157. Power Spectral Density, 917MHz High Channel, 802.11n, 20MHz Bandwidth, Chain 0...... 128

Plot 158.	Power Spectral Density, 907MHz Low Channel, 802.11n, 5MHz Bandwidth, Chain 1	129
Plot 159.	Power Spectral Density, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth, Chain 1	129
Plot 160.	Power Spectral Density, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth, Chain 1	130
	Power Spectral Density, 922MHz High Channel, 802.11n, 5MHz Bandwidth, Chain 1	130
Plot 162.	Power Spectral Density, 912MHz Low Channel, 802.11n, 10MHz Bandwidth, Chain 1	131
Plot 163.	Power Spectral Density, 917MHz High Channel, 802.11n, 10MHz Bandwidth, Chain 1	131
Plot 164.	Power Spectral Density, 912MHz Low Channel, 802.11n, 20MHz Bandwidth, Chain 1	132
Plot 165.	Power Spectral Density, 917MHz High Channel, 802.11n, 20MHz Bandwidth, Chain 1	132
Plot 166.	Power Spectral Density, 907MHz Low Channel, 802.11n, 5MHz Bandwidth, Combined Chains	133
Plot 167.	Power Spectral Density, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth, Combined Chains	133
Plot 168.	Power Spectral Density, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth, Combined Chains	134
Plot 169	Power Spectral Density, 922MHz High Channel, 802.11n, 5MHz Bandwidth, Combined Chains	134
Plot 170.	Power Spectral Density, 912MHz Low Channel, 802.11n, 10MHz Bandwidth, Combined Chains	135
Plot 171.	Power Spectral Density, 917MHz High Channel, 802.11n, 10MHz Bandwidth, Combined Chains	135
Plot 172.	Power Spectral Density, 912MHz Low Channel, 802.11n, 20MHz Bandwidth, Combined Chains	136
Plot 173.	Power Spectral Density, 917MHz High Channel, 802.11n, 20MHz Bandwidth, Combined Chains	136

List of Figures

Figure 1.	Block Diagram of Test Configuration (Radiated)	6
Figure 2.	Block Diagram of Test Configuration (Conducted)	7
Figure 3.	Block Diagram, Occupied Bandwidth Test Setup	. 28
Figure 4.	Peak Power Output Test Setup	. 56
Figure 5.	Block Diagram, Conducted Receiver Spurious Emissions Test Setup	. 91
Figure 6.	Block Diagram, Conducted Spurious Emissions Test Setup	. 94
Figure 7.	Block Diagram, Peak Power Spectral Density Test Setup	116

List of Photographs

Photograph 1.	Ubiquiti Networks Model M900	. 5
	Conducted Emissions, Test Setup	
	Radiated Emission, 30MHz – 1GHz Test Setup	
Photograph 4.	Radiated Emission, Test Setup Back View	20
Photograph 5.	Radiated Emission, above 1GHz Test Setup	21
Photograph 6.	Conducted Emissions, 15.207, Test Setup	27

ACAlternating CurrentACFAntenna Correction FactorCalCalibrationdMeasurement DistancedBDecibelsdBµADecibels above one microampdBµVDecibels above one microvoltdBµA/mDecibels above one microwolt per meterdBµV/mDecibels above one microvolt per meter		
Cal Calibration d Measurement Distance dB Decibels dBμA Decibels above one microamp dBμV Decibels above one microvolt dBμA/m Decibels above one microamp per meter		
d Measurement Distance dB Decibels dBμA Decibels above one microamp dBμV Decibels above one microvolt dBμA/m Decibels above one microamp per meter		
dB Decibels dBμA Decibels above one microamp dBμV Decibels above one microvolt dBμA/m Decibels above one microamp per meter		
dBμA Decibels above one microamp dBμV Decibels above one microvolt dBμA/m Decibels above one microamp per meter		
dBμV Decibels above one microvolt dBμA/m Decibels above one microamp per meter		
dBµA/m Decibels above one microamp per meter		
dBuV/m Decibels above one microvolt per meter	ļ	
DC Direct Current μ		
E Electric Field		
DSL Digital Subscriber Line		
ESD Electrostatic Discharge		
EUT Equipment Under Test		
f Frequency		
FCC Federal Communications Commission		
GRP Ground Reference Plane		
H Magnetic Field		
HCP Horizontal Coupling Plane		
Hz Hertz		
IEC International Electrotechnical Commission		
kHz kilohertz		
kPa kilopascal		
kV kilovolt		
LISN Line Impedance Stabilization Network		
MHz Megahertz		
μ H microhenry		
μ microf arad		
μs microseconds		
NEBS Network Equipment-Building System		
PRF Pulse Repetition Frequency		
RF Radio Frequency		
RMS Root-Mean-Square		
TWT Traveling Wave Tube		
V/m Volts per meter		
VCP Vertical Coupling Plane		

List of Terms and Abbreviations

I. Executive Summary

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the Ubiquiti Networks M900, with the requirements of Part 15, §15.247. All references are to the most current version of Title 47 of the Code of Federal Regulations in effect. In accordance with §2.1033, the following data is presented in support of the Certification of the M900. Ubiquiti Networks should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the M900, has been **permanently** discontinued

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, §15.247, in accordance with Ubiquiti Networks, purchase order number US090038. All tests were conducted using measurement procedure ANSI C63.4-2003.

FCC Reference 47 CFR Part 15.247:2005	IC Reference RSS-210 Issue 7: 2007	Description	Compliance
47 CFR Part 15.107 (a)	ICES-003 Issue 4 February 2004	Conducted Emission Limits for a Class A Digital Device	Compliant
47 CFR Part 15.109 (a)	ICES-003 Issue 4 February 2004	Radiated Emission Limits for a Class A Digital Device	Compliant
Title 47 of the CFR, Part 15 §15.203	N/A	Antenna Requirement	Compliant
Title 47 of the CFR, Part 15 §15.207(a)	RSS-210(7.2.2)	Conducted Emission Voltage	Compliant
Title 47 of the CFR, Part 15 §15.247(a)(1)	RSS-210(A8.1)	Occupied Bandwidth	Compliant
Title 47 of the CFR, Part 15 §15.247(b)	RSS-210(A8.4)	RF Output Power	Compliant
Title 47 of the CFR, Part 15 §15.209, §15.247(d)	RSS-210(A8.5)	Radiated Spurious Emissions	Compliant
Title 47 of the CFR, Part 15 §15.205	RSS-210(A8.5)	Emissions at Restricted Band	Compliant
Title 47 of the CFR, Part 15 §15.209, §15.247(d)	RSS-210(A8.5)	Conducted Spurious Emissions	Compliant
Title 47 of the CFR, Part 15; §15.247(e)	RSS-210(A8.3)	Power Spectral Density	Compliant
Title 47 of the CFR, Part 15 §15.247(i)	RSS-Gen(5.5)	Maximum Permissible Exposure	Compliant
N/A	RSS-Gen(4.8)	Receiver Spurious Emissions	Compliant

Table 1. Executive Summary of EMC Part 15.247 ComplianceTesting

II. Equipment Configuration

A. Overview

MET Laboratories, Inc. was contracted by Ubiquiti Networks to perform testing on the M900, under Ubiquiti Networks' purchase order number US090038.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Ubiquiti Networks, M900.

Model(s) Tested:	M900		
Model(s) Covered:	M900		
	Primary Power: PoE, 24V/15V, 0.5A FCC ID: SWX-M900 IC: 6545A-M900		
EUT Specifications:	Equipment Code:	DTS	
~ F	Peak RF Output Power:	23 dBm	
	EUT Frequency Ranges:	907-922MHz	
Analysis:	The results obtained relate only to the item(s) tested.		
	Temperature: 15-35° C		
Environmental Test Conditions:	Relative Humidity: 30-60%		
	Barometric Pressure: 860-1060 mbar		
Evaluated by:	Anderson Soungpanya		
Report Date(s):	March 30, 2010		

The results obtained relate only to the item(s) tested.

 Table 2. EUT Summary Table

B. References

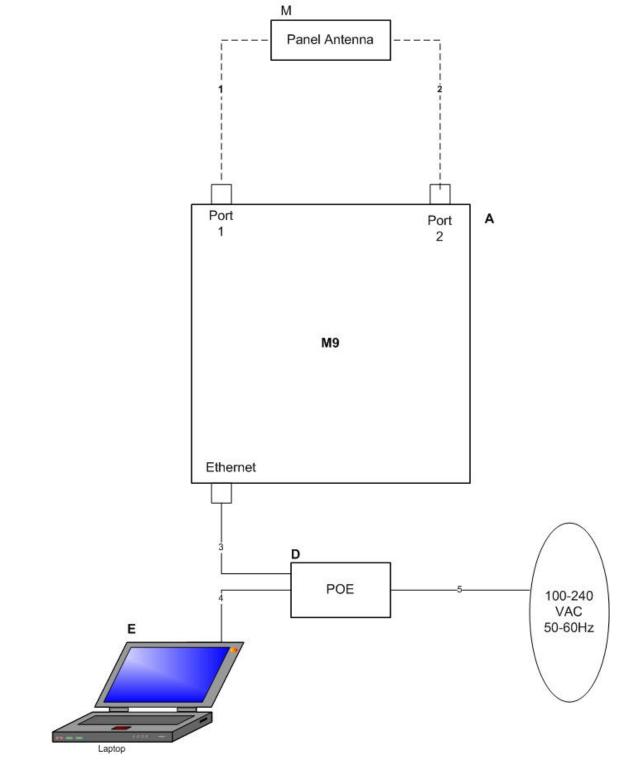
CFR 47, Part 15, Subpart C	Federal Communication Commission, Code of Federal Regulations, Title 47, Part 15: General Rules and Regulations, Allocation, Assignment, and Use of Radio Frequencies				
RSS-210, Issue 7, June 2007	Low-power Licence-exempt Radiocommunications Devices (All Frequency Bands): Category I Equipment				
CFR 47, Part 15, Subpart B	Electromagnetic Compatibility: Criteria for Radio Frequency Devices				
ICES-003, Issue 4 February 2004	Electromagnetic Compatibility: Criteria for Radio Frequency Devices				
ANSI C63.4:2003	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz				
ANSI/NCSL Z540-1-1994	Calibration Laboratories and Measuring and Test Equipment - General Requirements				
ANSI/ISO/IEC 17025:2000	General Requirements for the Competence of Testing and Calibration Laboratories				

Table 3. References

C. Test Site

All testing was performed at MET Laboratories, Inc., 3162 Belick St., Santa Clara, CA 95054. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 10 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.


D. Description of Test Sample

The Ubiquiti Networks M900, Equipment Under Test (EUT), is a 900MHz 2x2 MIMO 802.11n Outdoor Radio.

Photograph 1. Ubiquiti Networks Model M900

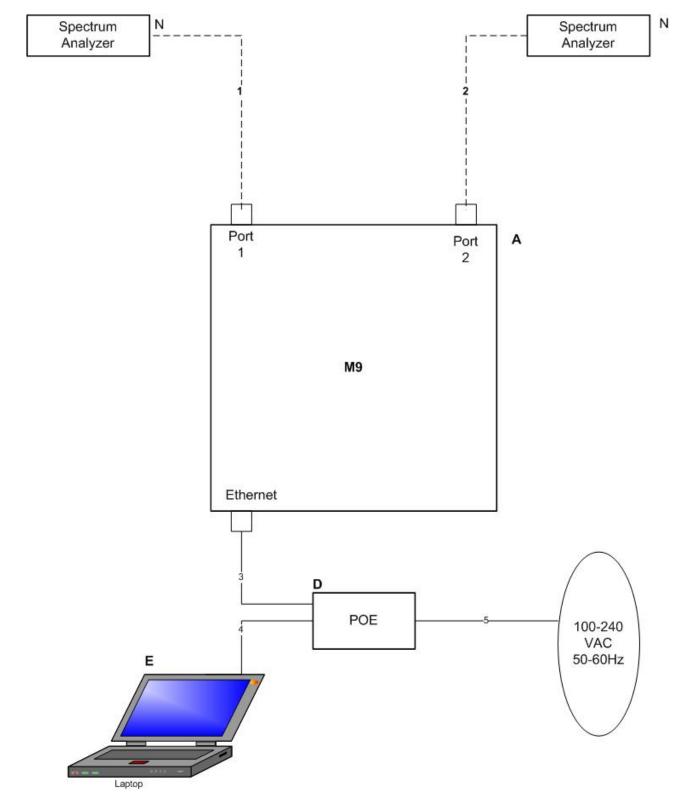


Figure 2. Block Diagram of Test Configuration (Conducted)

E. Equipment Configuration

The EUT was set up as outlined in Figure 1 and Figure 2, Block Diagram of Test Setup. All cards, racks, etc., incorporated as part of the EUT is included in the following list.

Ref. ID	Name / Description	Model Number	Part Number	Serial Number	
А	900MHz Radio	900MHz Radio M900 Roc			
D	POE UB1-POE-15-8		NA	0908-0012288	

 Table 4. Equipment Configuration

F. Support Equipment

Support equipment necessary for the operation and testing of the EUT is included in the following list.

Ref. ID	Name / Description	Manufacturer	Model Number	
Ν	Spectrum Analyzer	Agilent	E4407B	
Е	Laptop	Dell	Vostro 1000	
М	16dBi Panel Antenna	Ubiquiti	PS9	

Table 5.Support Equipment

G. Ports and Cabling Information

Ref. ID	Port name on EUT	Cable Description or reason for no cable	Qty.	Length (m)	Shielded (Y/N)	Termination Box ID & Port Name
1	B, Antenna Port1	Coaxial Cable	1	0.1	Y	M or N
2	B, Antenna Port2	Coaxial Cable	1	0.1	Y	M or N
3	B, Ethernet	CAT 5	1	0.5-3m	Y	D
4	D, Data	CAT 5	1	0.5-3m	Y	E, Laptop
5	D, POE	Power Cord	1	.5	Ν	100-240V AC power

Table 6. Ports and Cabling Information

H. Mode of Operation

The EUT uses Atheros radio test software to operate.

I. Method of Monitoring EUT Operation

Ping Times out and doesn't return. Unit locks up requires power down is a fail.

J. Modifications

a) Modifications to EUT

No modifications were made to the EUT.

b) Modifications to Test Standard

No modifications were made to the test standard.

K. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Ubiquiti Networks upon completion of testing.

III.Electromagnetic Compatibility Criteria for Unintentional Radiators

Electromagnetic Compatibility Criteria

§ 15.107 Conducted Emissions Limits

Test Requirement(s): 15.107 (a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in Table 7. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

15.107 (b) For a Class A digital device that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in Table 7. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals. The lower limit applies at the band edges.

15.207(a), Except as shown in paragraphs (b) and (c) of this section*, charging, AC adapters or battery eliminators the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the Table 7, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency range	Class A Cond (dB)		*Class B Conducted Limits (dBµV)		
(MHz)	Quasi-Peak	Average	Quasi-Peak	Average	
* 0.15- 0.45	79	66	66 - 56	56 - 46	
0.45 - 0.5	79	66	56	46	
0.5 - 30	73	60	60	50	

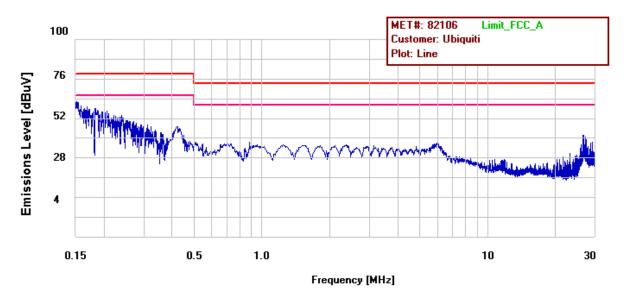
Note 1 — The lower limit shall apply at the transition frequencies.

Note 2 — The limit decreases linearly with the logarithm if the frequency in the range 0.15 MHz to 0.5 MHz. * -- Limits per Subsection 15.207(a).

Table 7. Conducted Limits for Radio Frequency Devices calculated from FCC Part 15Subsections 15.107(a) (b) and 15.207(a)

Test Results: The EUT was compliant with the Class A requirement(s) of this section.

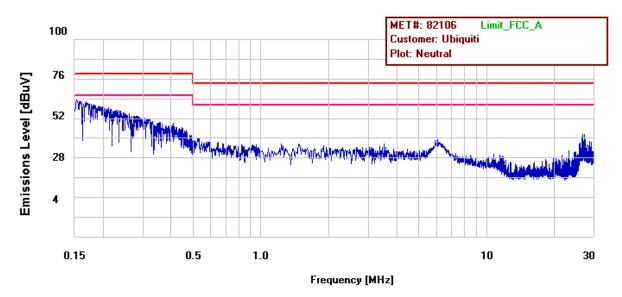
Test Engineer(s): Anderson Soungpanya


Test Date(s): 01/21/10

Freq (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
.157	50.35	79	-28.65	Pass	19.17	66	-46.83	Pass
.420	45.34	79	-33.66	Pass	35.27	66	-30.73	Pass
26.55	37.26	73	-35.74	Pass	31.26	60	-28.74	Pass

Conducted Emissions - Voltage, AC Power, Phase Line

Table 8. Conducted Emissions - Voltage, AC Power, Phase Line


Plot 1. Conducted Emission, Phase Line Plot

Freq (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
.150	50.48	79	-28.52	Pass	27.34	66	-38.66	Pass
6.19	30.86	73	-42.14	Pass	23.35	60	-36.65	Pass
26.61	40.35	73	-32.65	Pass	34.14	60	-25.86	Pass

Conducted Emissions - Voltage, AC Power, Neutral Line


Table 9. Conducted Emissions - Voltage, AC Power, Neutral Line

Plot 2. Conducted Emission, Neutral Line Plot

Conducted Emission Limits Test Setup

Photograph 2. Conducted Emissions, Test Setup

Radiated Emission Limits

§ 15.109 Radiated Emissions Limits

Test Requirement(s): 15.109 (a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the Class B limits expressed in Table 10.

15.109 (b) The field strength of radiated emissions from a Class A digital device, as determined at a distance of 10 meters, shall not exceed the Class A limits expressed in Table 10.

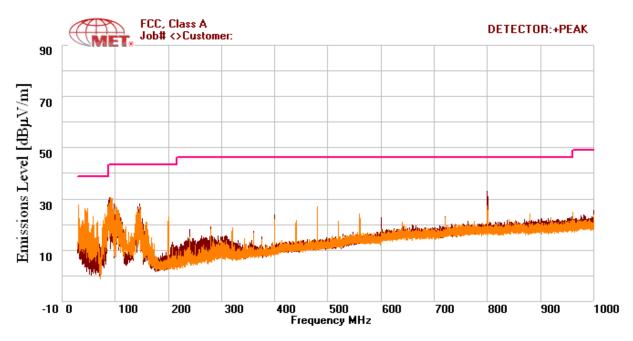
	Field Strength (dBµV/m)						
Frequency (MHz)	§15.109 (b), Class A Limit (dBμV) @ 10m	§15.109 (a),Class B Limit (dBμV) @ 3m					
30 - 88	39.00	40.00					
88 - 216	43.50	43.50					
216 - 960	46.40	46.00					
Above 960	49.50	54.00					

 Table 10. Radiated Emissions Limits calculated from FCC Part 15, §15.109 (a) (b)

Test Procedures: The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semianechoic chamber. The method of testing and test conditions of ANSI C63.4 were used. An antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1 m and 4 m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. Unless otherwise specified, measurements were made using a quasi-peak detector with a 120 kHz bandwidth.

- **Test Results:** The EUT was compliant with the Class A requirement(s) of this section.
- Test Engineer(s):Anderson Soungpanya

Test Date(s): 01/21/10



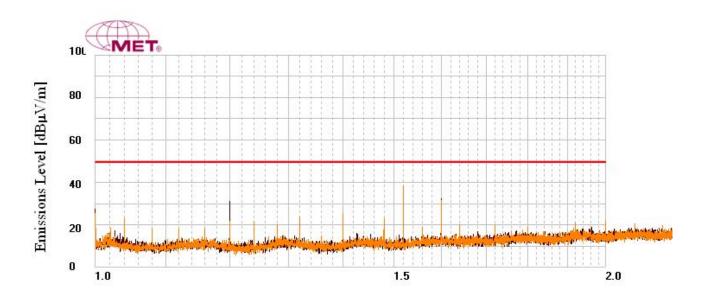
Radiated Emissions Limits Test Results, Class A

Frequency (MHz)	Antenna Polarity	EUT Azimuth (Degrees)	Antenna Height (cm)	Uncorrected Amplitude (dBµV)	ACF (dB/m)	CBL (dB)	DCF (dB)	Corrected Amplitude (dBµV)	Limit (dBµV)	Margin (dB)
90.36	V	212	122	28.24	9.922	2.642	-10.46	30.344	43.5	-13.156
148.1	V	284	100	21.37	11.814	3.36	-10.46	26.084	43.5	-17.416
31.4	V	294	100	18.26	16.96	1.29	-10.46	26.05	39	-12.95
88.84	Н	257	212	29.12	8.791	2.609	-10.46	30.06	43.5	-13.44
145.26	Н	110	174	23.74	11.49	3.33	-10.46	28.1	43.5	-15.4
799.98	Н	200	137	18.05	20.9	6.23	-10.46	34.72	46.4	-11.68

Table 11. Radiated Emissions Limits, Test Results, 30MHz – 1GHz FCC Limits

Note The EUT was tested at 3 m.

Plot 3. Radiated Emissions, 30MHz - 1GHz, FCC Limits



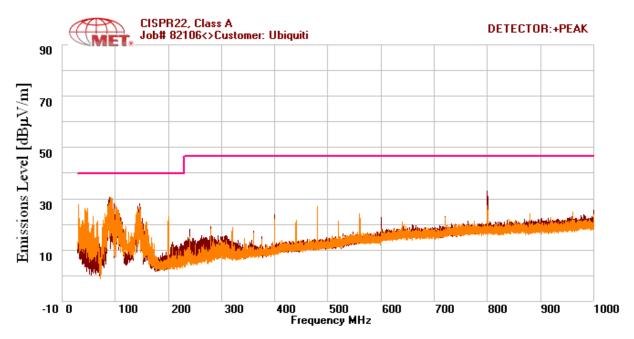
Radiated Emissions Limits Test Results, Class A

Frequency (MHz)	Antenna Polarity	EUT Azimuth (Degrees)	Antenna Height (cm)	Uncorrected Amplitude (dBµV)	ACF (dB/m)	Pre Amp Gain (dB)	CBL (dB)	DCF (dB)	Corrected Amplitude (dBµV)	Limit (dBµV)	Margin (dB)
1520	V	219	100	87.27	28.401	75.856	9.086	-10.46	38.441	49.5	-11.059
1600	Н	180	161	87.62	28.832	75.758	9.31	-10.46	39.544	49.5	-9.956
1200	Н	150	137	82.67	27.647	76.69	8.112	-10.46	31.279	49.5	-18.221

Table 12. Radiated Emissions Limits, Test Results, above 1GHz FCC Limits

Note: The EUT was tested at 3 m.

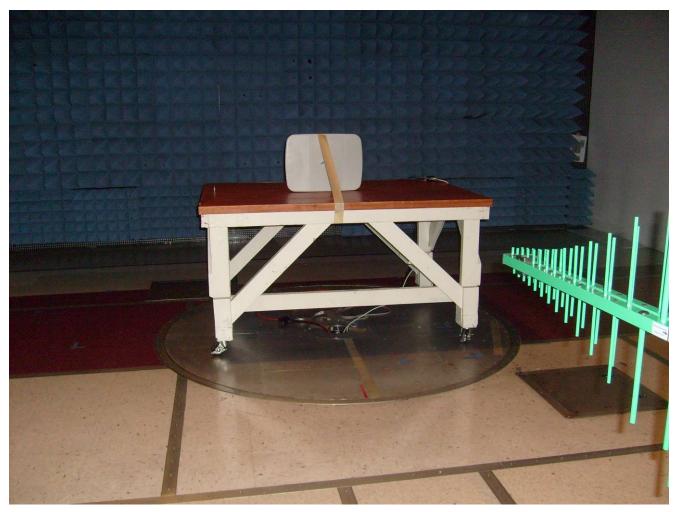
Plot 4. Radiated Emissions, above 1GHz, FCC Limits

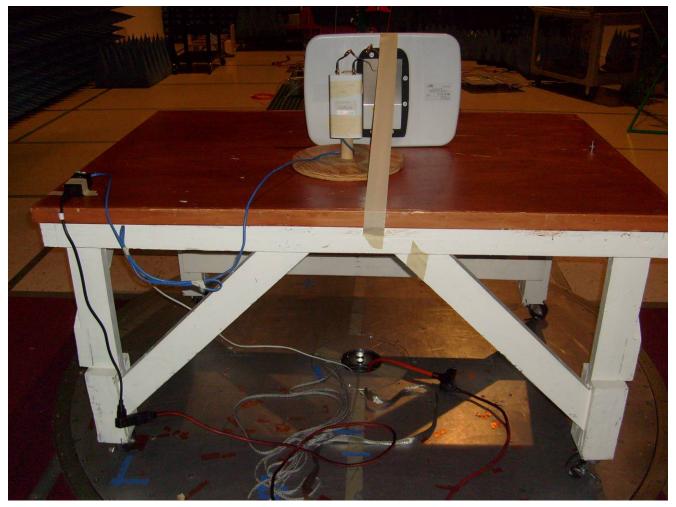


Frequency (MHz)	Antenna Polarity	EUT Azimuth (Degrees)	Antenna Height (cm)	Uncorrected Amplitude (dBµV)	ACF (dB/m)	Pre Amp Gain (dB)	CBL (dB)	DCF (dB)	Corrected Amplitude (dBµV)	Limit (dBµV)	Margin (dB)
90.36	V	212	122	28.24	9.922	0	2.642	-10.46	30.344	40	-9.656
148.1	V	284	100	21.37	11.814	0	3.36	-10.46	26.084	40	-13.916
31.4	V	294	100	18.26	16.96	0	1.29	-10.46	26.05	40	-13.95
88.84	Н	257	212	29.12	8.791	0	2.609	-10.46	30.06	40	-9.94
145.26	Н	110	174	23.74	11.49	0	3.33	-10.46	28.1	40	-11.9
799.98	Н	200	137	18.05	20.9	0	6.23	-10.46	34.72	47	-12.28

Radiated Emissions Limits Test Results, Class A

Table 13. Radiated Emissions Limits, Test Results, ICES-003 Limits


Note: The EUT was tested at 3 m.


Radiated Emission Limits Test Setup

Photograph 3. Radiated Emission, 30MHz – 1GHz Test Setup

Radiated Emission Limits Test Setup

Photograph 4. Radiated Emission, Test Setup Back View

Radiated Emission Limits Test Setup

Photograph 5. Radiated Emission, above 1GHz Test Setup

IV. Electromagnetic Compatibility Criteria for Intentional Radiators

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.203 Antenna Requirement

Test Requirement: § 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:

- a.) Antenna must be permanently attached to the unit.
- b.) Antenna must use a unique type of connector to attach to the EUT.

c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.

Results: The EUT as tested is compliant the criteria of §15.203 by virtue of professional installation.

Test Engineer(s): Anderson Soungpanya

Test Date(s): 01/21/10

Gain	Туре	Model	Manufacturer		
13dBi	Panel	RP-9M-13	Ubiquiti		

Table 14. Antenna List

Electromagnetic Compatibility Criteria for Intentional Radiators

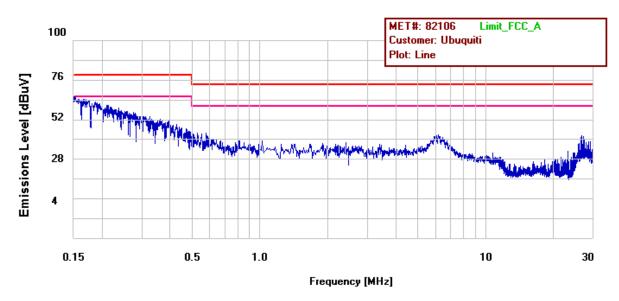
§ 15.207 Conducted Emissions Limits

Test Requirement(s): § 15.207 (a): For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency range (MHz)	§ 15.207(a), Conducted Limit (dBμV)	
	Quasi-Peak	Average
* 0.15- 0.45	66 - 56	56 - 46
0.45 - 0.5	56	46
0.5 - 30	60	50

Test Procedure: The EUT was placed on a 0.8 m-high wooden table inside a screen room. The EUT was situated such that the back of the EUT was 0.4 m from one wall of the vertical ground plane, and the remaining sides of the EUT were no closer than 0.8 m from any other conductive surface. The EUT was powered from a 50 Ω /50 μ H Line Impedance Stabilization Network (LISN). The EMC receiver scanned the frequency range from 150 kHz to 30 MHz. Conducted Emissions measurements were made in accordance with ANSI C63.4-2003 "Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz". The measurements were performed over the frequency range of 0.15 MHz to 30 MHz using a 50 Ω /50 μ H LISN as the input transducer to an EMC/field intensity meter. For the purpose of this testing, the transmitter was turned on. Scans were preformed with the transmitter on.

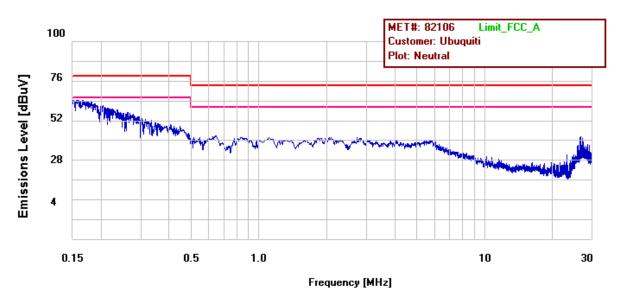
- **Test Results:** The EUT was compliant with this requirement.
- Test Engineer(s):Anderson Soungpanya


Test Date(s): 01/21/10

Freq (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
.153	54.23	79	-24.77	Pass	22.44	66	-43.56	Pass
6.01	34.32	73	-38.68	Pass	26.53	60	-33.47	Pass
26.60	48.43	73	-24.57	Pass	42.92	60	-17.08	Pass

15.207 Conducted Emissions Test Results

Table 16. Conducted Emissions, 15.207, Phase Line, Test Results



Plot 6. Conducted Emissions, Phase Line

Freq (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
.153	54.29	79	-24.71	Pass	22.84	66	-43.16	Pass
6.03	35.28	73	-37.72	Pass	27.74	60	-32.26	Pass
26.83	49.78	73	-23.22	Pass	43.67	60	-16.33	Pass

Table 17. Conducted Emissions, 15.207, Neutral Line, Test Results

Plot 7. Conducted Emissions, Neutral Line

15.207 Conducted Emissions Test Setup Photo

Photograph 6. Conducted Emissions, 15.207, Test Setup

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(a) 6 dB and 99% Bandwidth

Test Requirements:	§ 15.247(a): Operation under the provisions of this section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:
	For systems using digital modulation techniques, the EUT may operate in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. The minimum 6dB bandwidth shall be at least 500 kHz.
Test Procedure:	The transmitter was on and transmitting at the highest output power. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using a RBW approximately 1% of the total emission bandwidth, $VBW > RBW$. The 6 dB Bandwidth was measured and recorded. The measurements were performed on the low, mid and high channels.
Test Results	The EUT was compliant with § 15.247 (a). The 6 dB and 99% Bandwidth was determined from the plots on the following pages.
Test Engineer(s):	Anderson Soungpanya
Test Date(s):	01/21/10

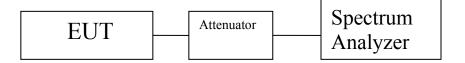


Figure 3. Block Diagram, Occupied Bandwidth Test Setup

Occupied Bandwidth Test Results – Chain 0

Occupied Bandwidth						
Carrier Channel	Frequency (MHz)	Measured 6 dB Bandwidth (MHz)	Measured 99% Bandwidth (MHz)			
Low	907	4.444	4.4836			
Mid	912	4.423	4.4654			
Mid	917	4.417	4.4929			
High	922	4.433	4.5001			

 Table 18. Occupied Bandwidth 802.11g (5MHz) Mode Test Results – Chain 0

Occupied Bandwidth					
Carrier Channel	Frequency (MHz)	Measured 6 dB Bandwidth (MHz)	Measured 99% Bandwidth (MHz)		
Low	912	8.799	9.1183		
High	917	8.777	9.0458		

Table 19. Occupied Bandwidth 802.11g (10MHz) Mode Test Results - Chain 0

Occupied Bandwidth					
Carrier Channel	Frequency (MHz)	Measured 6 dB Bandwidth (MHz)	Measured 99% Bandwidth (MHz)		
Low	912	17.714	17.7393		
High	917	17.204	17.6562		

Table 20. Occupied Bandwidth 802.11g (20MHz) Mode Test Results - Chain 0

Occupied Bandwidth Test Results – Chain 0

Occupied Bandwidth						
Carrier Channel	Frequency (MHz)	Measured 6 dB Bandwidth (MHz)	Measured 99% Bandwidth (MHz)			
Low	907	4.431	4.4881			
Mid	912	4.403	4.4426			
Mid	917	4.432	4.4756			
High	922	4.411	4.4749			

Table 21. Occupied Bandwidth 802.11n (5MHz) Mode Test Results – Chain 0

Occupied Bandwidth					
Carrier Channel	Frequency (MHz)	Measured 6 dB Bandwidth (MHz)	Measured 99% Bandwidth (MHz)		
Low	912	8.737	9.1231		
High	917	8.680	8.9760		

Table 22. Occupied Bandwidth 802.11n (10MHz) Mode Test Results - Chain 0

Occupied Bandwidth					
Carrier ChannelFrequency (MHz)Measured 6 dB Bandwidth (MHz)Measured 99% Bandwidth (MHz)					
Low	912	17.396	17.6948		
High	917	17.621	17.8006		

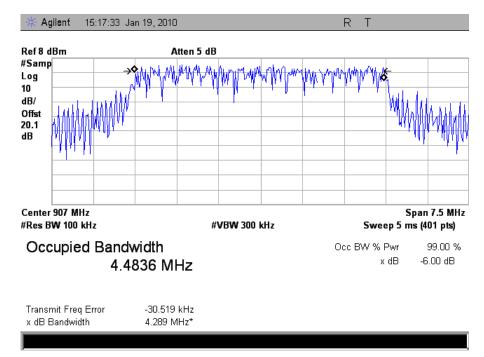
Table 23. Occupied Bandwidth 802.11n (20MHz) Mode Test Results - Chain 0

Occupied Bandwidth Test Results – Chain 1

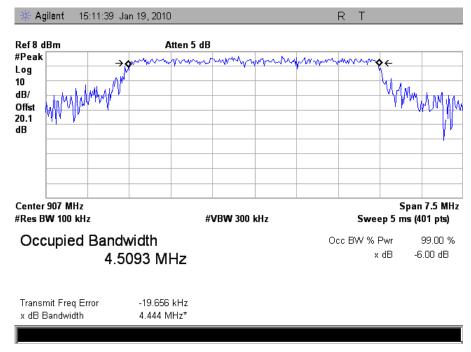
	Occupied Bandwidth						
Carrier Channel	Frequency (MHz)	Measured 6 dB Bandwidth (MHz)	Measured 99% Bandwidth (MHz)				
Low	907	4.387	4.4617				
Mid	912	4.442	4.4964				
Mid	917	4.432	4.5223				
High	922	4.416	4.5364				

 Table 24. Occupied Bandwidth 802.11n (5MHz) Mode Test Results – Chain 1

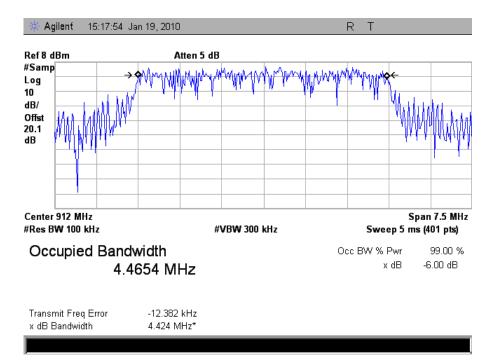
Occupied Bandwidth					
Carrier Channel	Frequency (MHz)	Measured 6 dB Bandwidth (MHz)	Measured 99% Bandwidth (MHz)		
Low	912	8.735	8.9287		
High	917	8.872	8.9963		


Table 25. Occupied Bandwidth 802.11n (10MHz) Mode Test Results - Chain 1

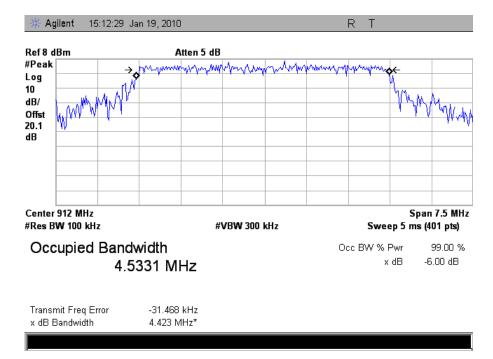
Occupied Bandwidth				
Carrier Channel	Frequency (MHz)	Measured 6 dB Bandwidth (MHz)	Measured 99% Bandwidth (MHz)	
Low	912	17.419	17.6249	
High	917	17.588	17.6350	


Table 26. Occupied Bandwidth 802.11n (20MHz) Mode Test Results – Chain 1

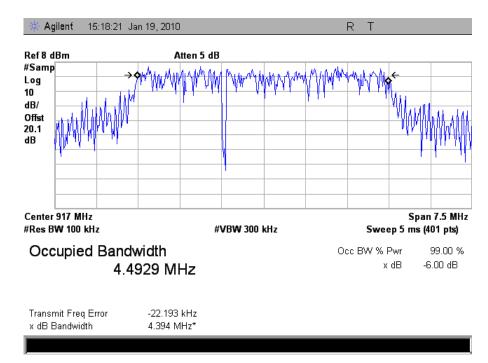
Occupied Bandwidth Test Results



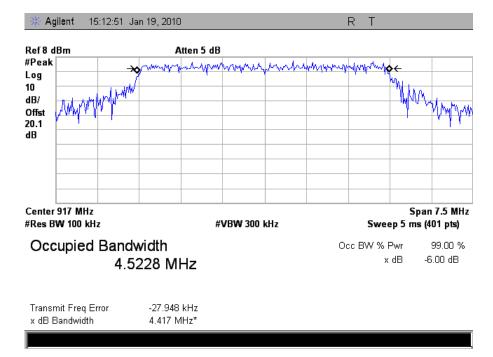
Plot 8. Occupied Bandwidth, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (99%)



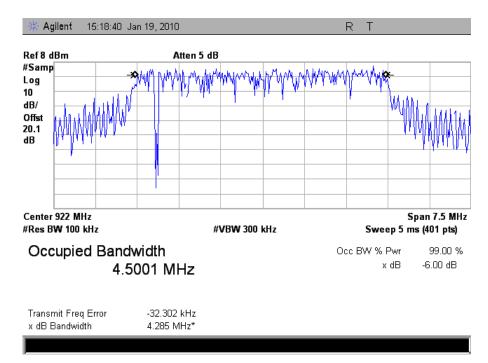
Plot 9. Occupied Bandwidth, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (100kHz)



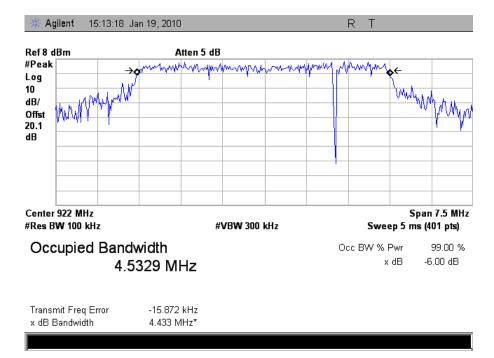
Plot 10. Occupied Bandwidth, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth, Chain 0 (99%)



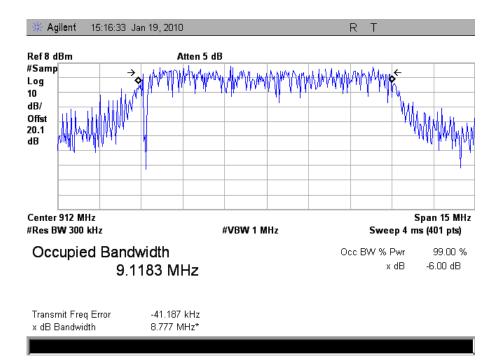
Plot 11. Occupied Bandwidth, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth, Chain 0 (100kHz)



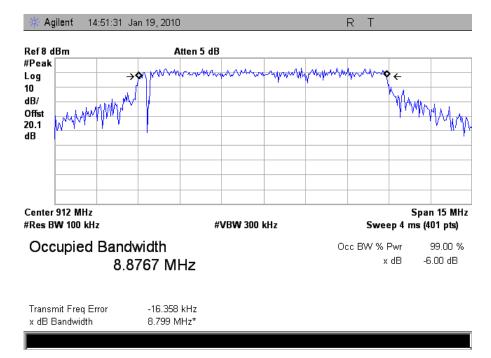
Plot 12. Occupied Bandwidth, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 (99%)



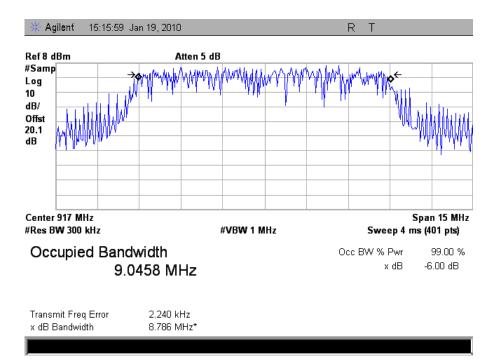
Plot 13. Occupied Bandwidth, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 (100kHz)



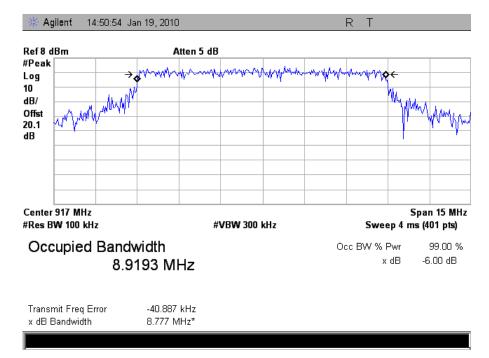
Plot 14. Occupied Bandwidth, 922MHz High Channel, 802.11g, 5MHz Bandwidth, Chain 0 (99%)



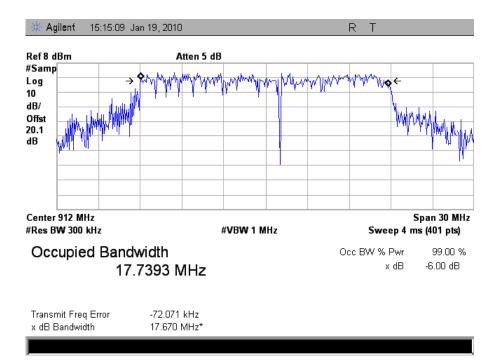
Plot 15. Occupied Bandwidth, 922MHz High Channel, 802.11g, 5MHz Bandwidth, Chain 0 (100kHz)



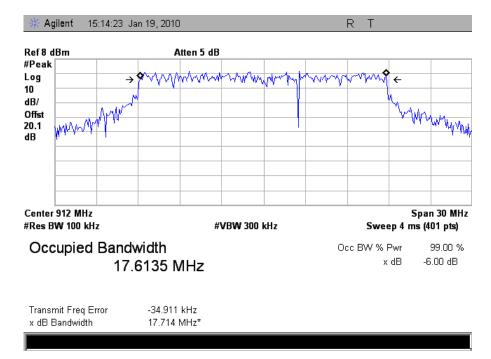
Plot 16. Occupied Bandwidth, 912MHz Low Channel, 802.11g, 10MHz Bandwidth, Chain 0 (99%)



Plot 17. Occupied Bandwidth, 912MHz Low Channel, 802.11g, 10MHz Bandwidth, Chain 0 (100kHz)



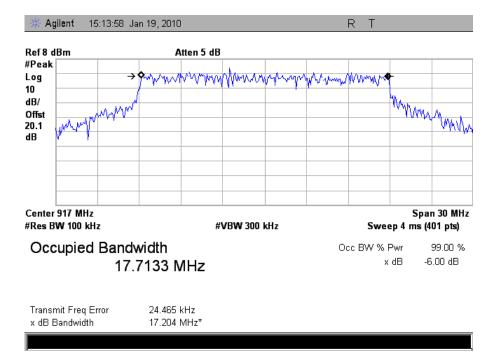
Plot 18. Occupied Bandwidth, 917MHz High Channel, 802.11g, 10MHz Bandwidth, Chain 0 (99%)



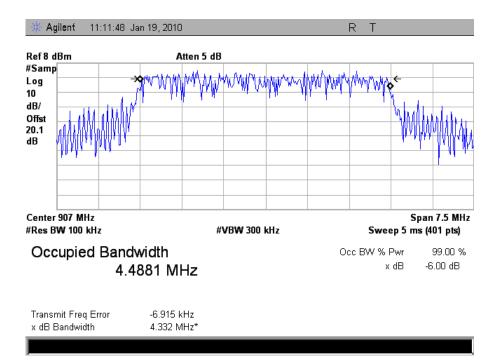
Plot 19. Occupied Bandwidth, 917MHz High Channel, 802.11g, 10MHz Bandwidth, Chain 0 (100kHz)



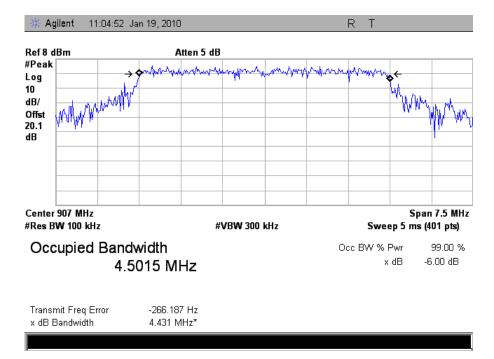
Plot 20. Occupied Bandwidth, 912MHz Low Channel, 802.11g, 20MHz Bandwidth, Chain 0 (99%)



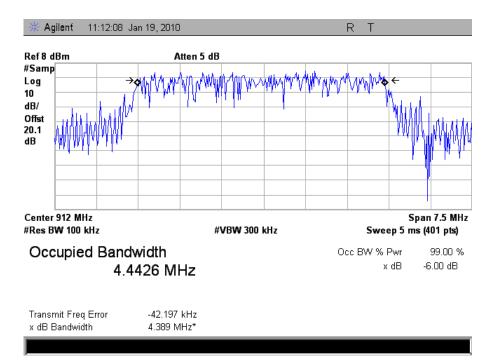
Plot 21. Occupied Bandwidth, 912MHz Low Channel, 802.11g, 20MHz Bandwidth, Chain 0 (100kHz)



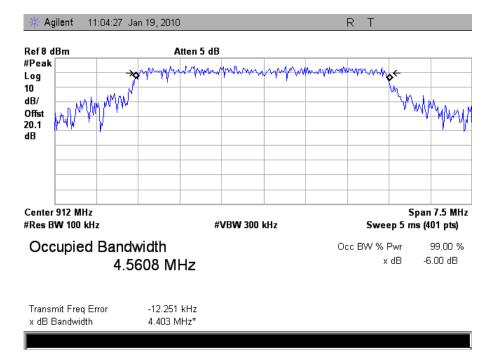
Plot 22. Occupied Bandwidth, 917MHz High Channel, 802.11g, 20MHz Bandwidth, Chain 0 (99%)



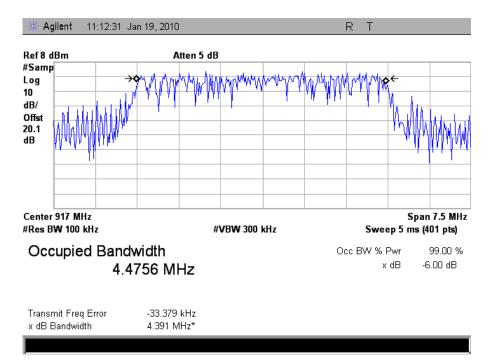
Plot 23. Occupied Bandwidth, 917MHz High Channel, 802.11g, 20MHz Bandwidth, Chain 0 (100kHz)



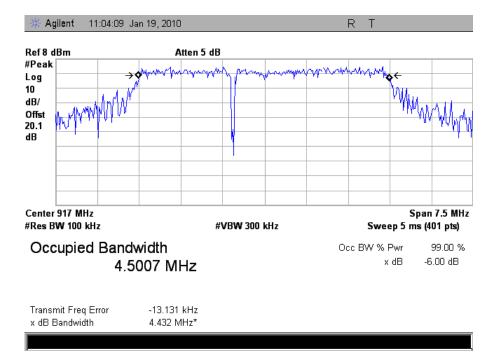
Plot 24. Occupied Bandwidth, 907MHz Low Channel, 802.11n, 5MHz Bandwidth, Chain 0 (99%)



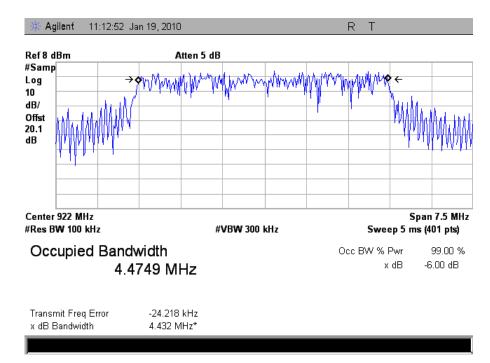
Plot 25. Occupied Bandwidth, 907MHz Low Channel, 802.11n, 5MHz Bandwidth, Chain 0 (100kHz)



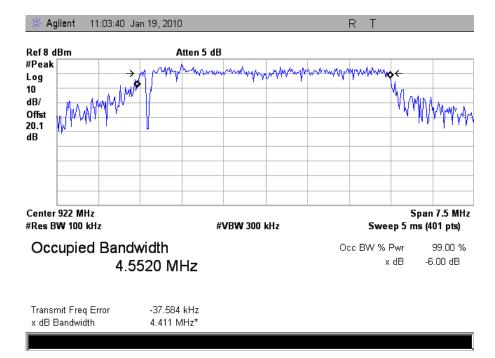
Plot 26. Occupied Bandwidth, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth, Chain 0 (99%)



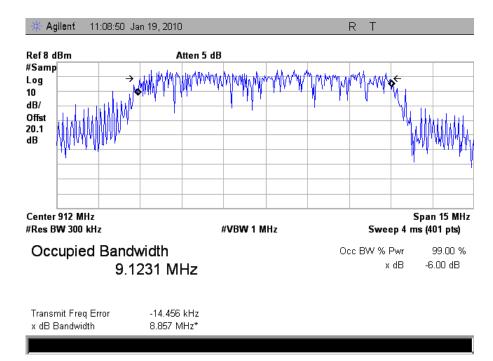
Plot 27. Occupied Bandwidth, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth, Chain 0 (100kHz)



Plot 28. Occupied Bandwidth, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth, Chain 0 (99%)



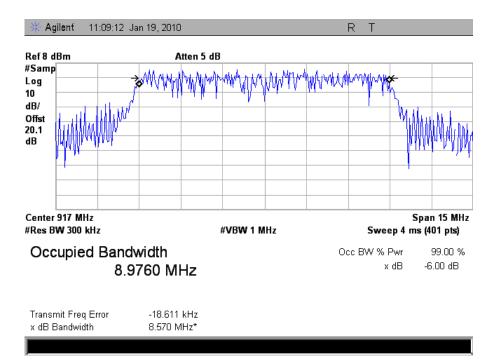
Plot 29. Occupied Bandwidth, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth, Chain 0 (100kHz)



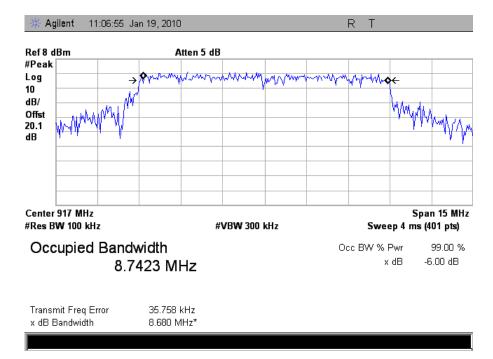
Plot 30. Occupied Bandwidth, 922MHz High Channel , 802.11n, 5MHz Bandwidth, Chain 0 (99%)



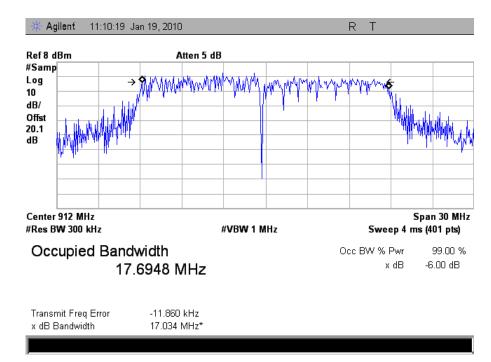
Plot 31. Occupied Bandwidth, 922MHz High Channel , 802.11n, 5MHz Bandwidth, Chain 0 (100kHz)



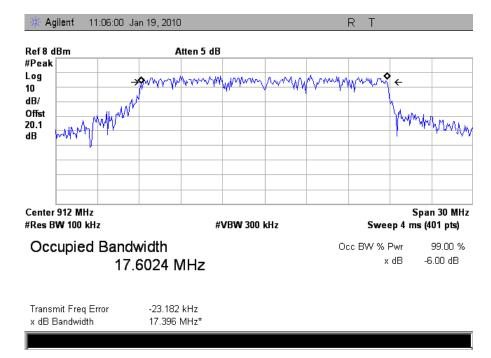
Plot 32. Occupied Bandwidth, 912MHz Low Channel, 802.11n, 10MHz Bandwidth, Chain 0 (99%)



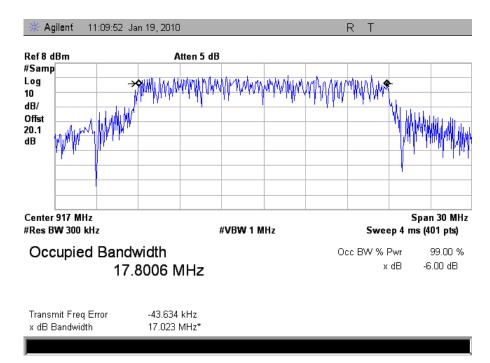
Plot 33. Occupied Bandwidth, 912MHz Low Channel, 802.11n, 10MHz Bandwidth, Chain 0 (100kHz)



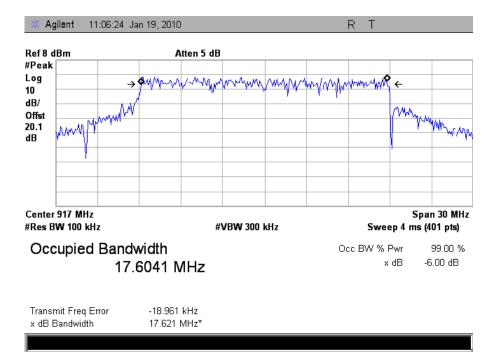
Plot 34. Occupied Bandwidth, 917MHz High Channel, 802.11n, 10MHz Bandwidth, Chain 0 (99%)



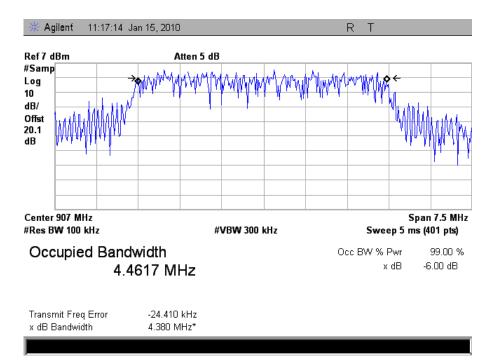
Plot 35. Occupied Bandwidth, 917MHz High Channel, 802.11n, 10MHz Bandwidth, Chain 0 (100kHz)



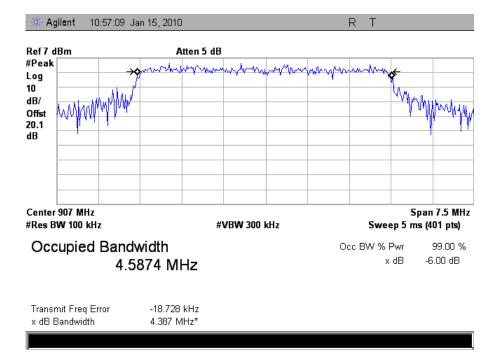
Plot 36. Occupied Bandwidth, 912MHz Low Channel, 802.11n, 20MHz Bandwidth, Chain 0 (99%)



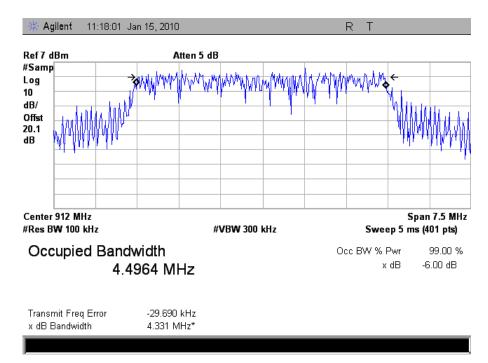
Plot 37. Occupied Bandwidth, 912MHz Low Channel, 802.11n, 20MHz Bandwidth, Chain 0 (100kHz)



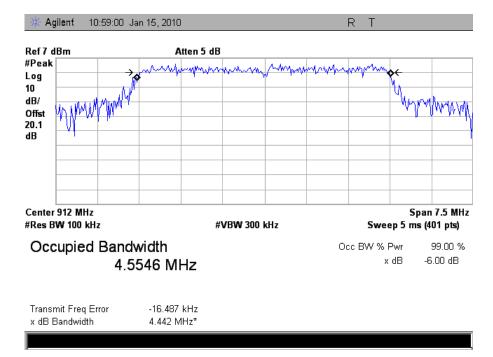
Plot 38. Occupied Bandwidth, 917MHz High Channel, 802.11n, 20MHz Bandwidth, Chain 0 (99%)



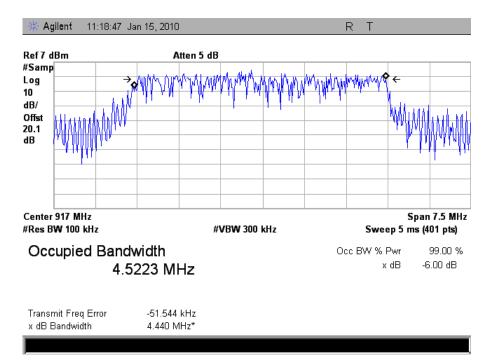
Plot 39. Occupied Bandwidth, 917MHz High Channel, 802.11n, 20MHz Bandwidth, Chain 0 (100kHz)



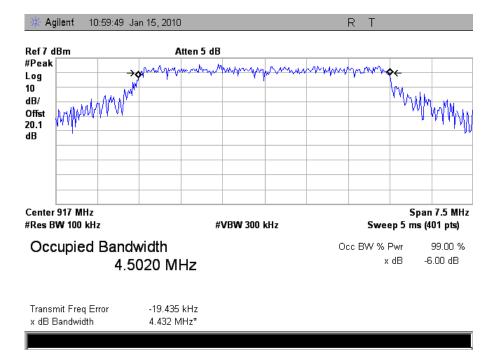
Plot 40. Occupied Bandwidth, 907MHz Low Channel, 802.11n, 5MHz Bandwidth, Chain 1 (99%)



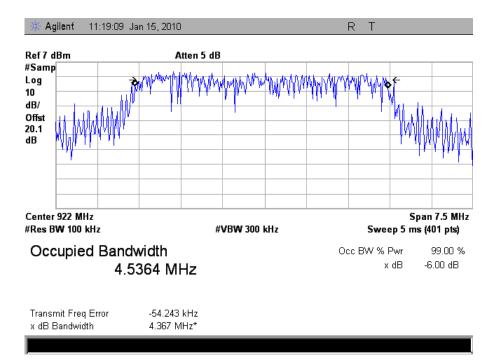
Plot 41. Occupied Bandwidth, 907MHz Low Channel, 802.11n, 5MHz Bandwidth, Chain 1 (100kHz)



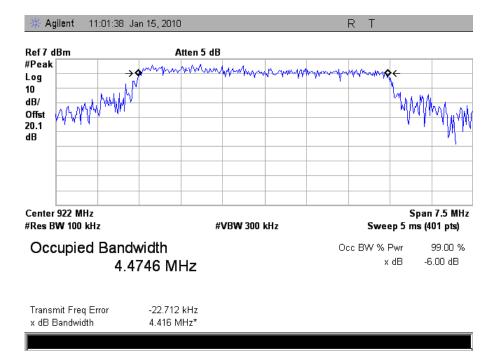
Plot 42. Occupied Bandwidth, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth, Chain 1 (99%)



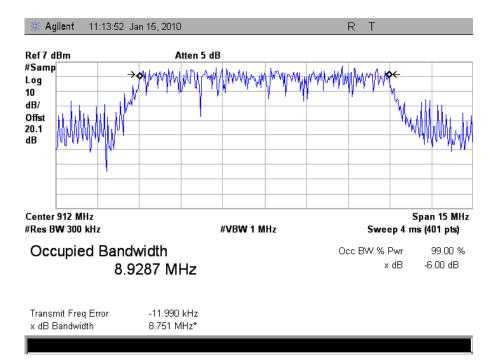
Plot 43. Occupied Bandwidth, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth, Chain 1 (100kHz)



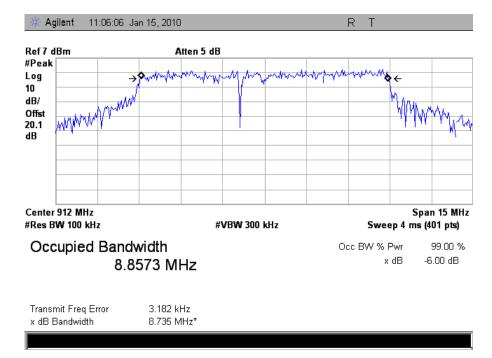
Plot 44. Occupied Bandwidth, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth, Chain 1 (99%)



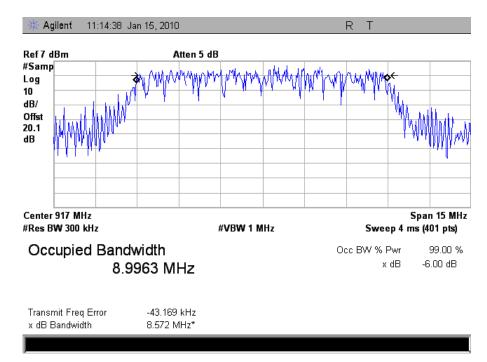
Plot 45. Occupied Bandwidth, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth, Chain 1 (100kHz)



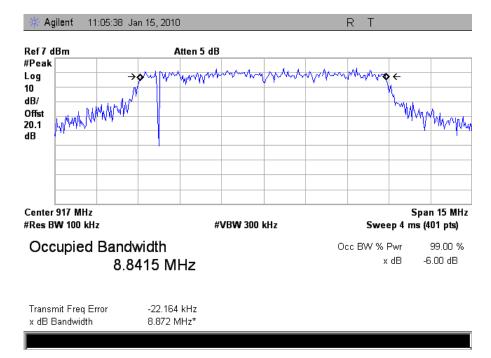
Plot 46. Occupied Bandwidth, 922MHz High Channel , 802.11n, 5MHz Bandwidth, Chain 1 (99%)



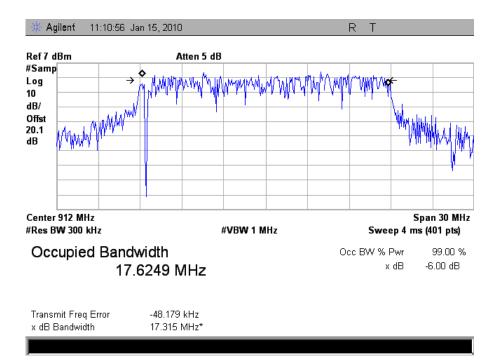
Plot 47. Occupied Bandwidth, 922MHz High Channel , 802.11n, 5MHz Bandwidth, Chain 1 (100kHz)



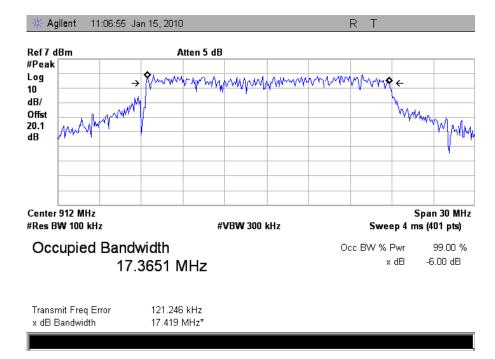
Plot 48. Occupied Bandwidth, 912MHz Low Channel , 802.11n, 10MHz Bandwidth, Chain 1 (99%)



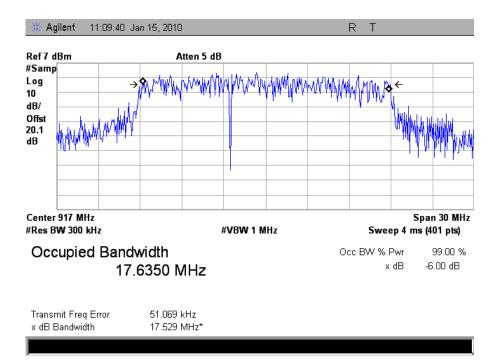
Plot 49. Occupied Bandwidth, 912MHz Low Channel , 802.11n, 10MHz Bandwidth, Chain 1 (100kHz)



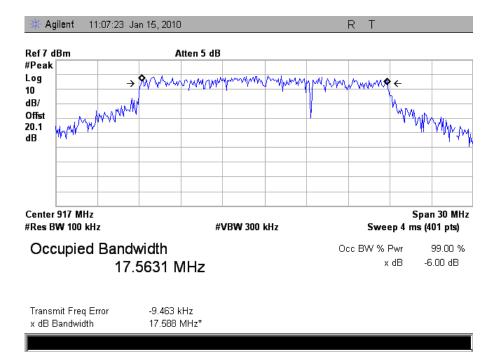
Plot 50. Occupied Bandwidth, 917MHz High Channel , 802.11n, 10MHz Bandwidth, Chain 1 (99%)



Plot 51. Occupied Bandwidth, 917MHz High Channel, 802.11n, 10MHz Bandwidth, Chain 1 (100kHz)



Plot 52. Occupied Bandwidth, 912MHz Low Channel , 802.11n, 20MHz Bandwidth, Chain 1 (99%)



Plot 53. Occupied Bandwidth, 912MHz Low Channel, 802.11n, 20MHz Bandwidth, Chain 1 (100kHz)

Plot 54. Occupied Bandwidth, 917MHz High Channel, 802.11n, 20MHz Bandwidth, Chain 1 (99%)

Plot 55. Occupied Bandwidth, 917MHz High Channel, 802.11n, 20MHz Bandwidth, Chain 1 (100kHz)

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(b) Peak Power Output and RF Exposure

Test Requirements:

§15.247(b): The maximum peak output power of the intentional radiator shall not exceed the following:

Digital Transmission Systems (MHz)	Output Limit (Watts)
902-928	1.000
2400–2483.5	1.000
5725-5850	1.000

 Table 27. Output Power Requirements from §15.247

§15.247(c): if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in the Table 27, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Fixed, point-to-point operation excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

- **Test Procedure:** The transmitter was connected to a calibrated spectrum analyzer. The EUT was measured at the low, mid and high channels of each band at the maximum power level. Since the EUT is deploying system with a 13 dBi Panel Antenna the peak output power limit was reduced in accordance to §15.247(c) to 23 dBm.
- **Test Results:** The EUT was compliant with the Peak Power Output limits of §15.247(b).
- Test Engineer(s):Anderson Soungpanya

Test Date(s): 01/21/10

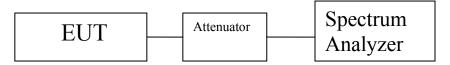


Figure 4. Peak Power Output Test Setup

RF Power Output Test Results

Peak Conducted Output Power				
Carrier Frequency Measured Peak Output Power			k Output Power	
Channel	(MHz)	dBm	Watts	
Low	907	23.00	0.199	
Mid	912	22.83	0.191	
Mid	917	22.78	0.189	
High	922	22.79	0.190	

Table 28. RF Output Power 802.11g (5MHz) Mode Test Results - Chain 0

Peak Conducted Output Power				
Carrier Frequency Measured Peak Output Power				
Channel	(MHz)	dBm	Watts	
Low	912	22.76	0.188	
High	917	22.58	0.181	

Peak Conducted Output Power				
Carrier Frequency Measured Peak Output Power				
Channel	(MHz)	dBm	Watts	
Low	912	22.87	0.193	
High	917	22.91	0.195	

Table 30. RF Output Power 802.11g (20MHz) Mode Test Results - Chain 0

RF Power Output Test Results

Peak Conducted Output Power				
Carrier Frequency Measured Peak Output Power			k Output Power	
Channel	(MHz)	dBm	Watts	
Low	907	19.67	0.092	
Mid	912	19.94	0.099	
Mid	917	19.96	0.100	
High	922	19.85	0.097	

Table 31. RF Output Power 802.11n (5MHz) Mode Test Results - Chain 0

Peak Conducted Output Power				
Carrier Frequency Measured Peak Output Power				
Channel	(MHz)	dBm	Watts	
Low	912	19.97	0.100	
High	917	19.73	0.094	

Table 32. RF Output Power 802.11n (10MHz) Mode Test Results – Chain 0

Peak Conducted Output Power				
Carrier Frequency Measured Peak Output Power				
Channel	(MHz)	dBm	Watts	
Low	912	19.43	0.088	
High	917	19.50	0.090	

Table 33. RF Output Power 802.11n (20MHz) Mode Test Results - Chain 0

RF Power Output Test Results

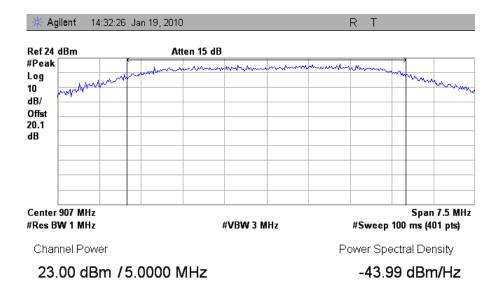
Peak Conducted Output Power				
Carrier Frequency Measured Peak Output Power			k Output Power	
Channel	(MHz)	dBm	Watts	
Low	907	19.58	0.091	
Mid	912	19.40	0.088	
Mid	917	19.87	0.098	
High	922	19.91	0.098	

Table 34. RF Output Power 802.11n (5MHz) Mode Test Results - Chain 1

Peak Conducted Output Power				
Carrier Frequency Measured Peak Output Power				
Channel	(MHz)	dBm	Watts	
Low	912	19.66	0.093	
High	917	19.69	0.094	

	Table 35.	RF Output Powe	r 802.11n (10MHz	z) Mode Test Results – 🤇	Chain 1
--	-----------	-----------------------	------------------	--------------------------	---------

Peak Conducted Output Power								
Carrier	Frequency	Measured Peak Output Power						
Channel	(MHz)	dBm	Watts					
Low	912	19.83	0.097					
High	917	19.77	0.095					


Table 36. RF Output Power 802.11n (20MHz) Mode Test Results - Chain 1

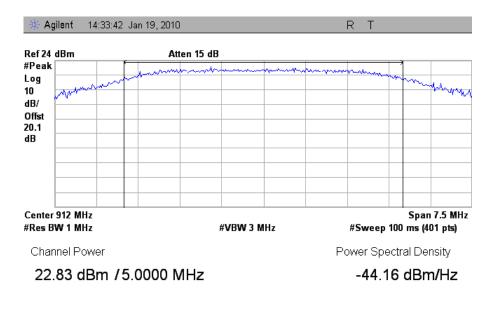
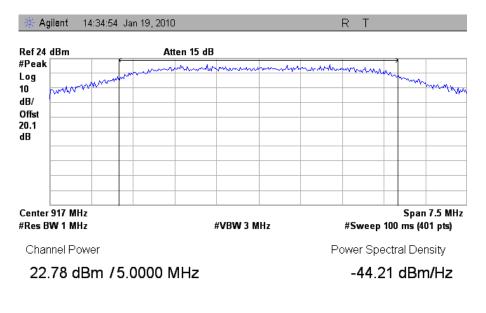
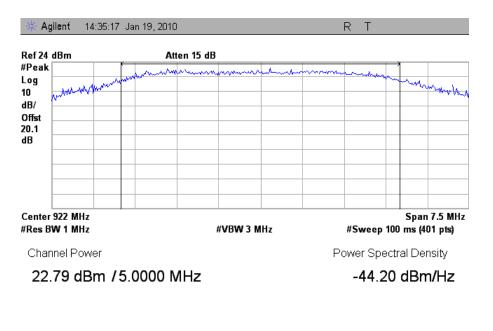

Mode	Carrier Frequency Channel (MHz)	Frequency (MHz)	•	Chain 1 (dBm)	Measured Peak Output Power Total			
		(141112)			dBm	Watts		
5MHz								
802.11n	Low	907	19.67	19.58	22.62	0.183		
	Mid	912	19.94	19.40	22.67	0.185		
	Mid	917	19.96	19.87	22.92	0.196		
	High	922	19.85	19.91	22.87	0.194		
10MHz								
802.11n	Low	912	19.97	19.66	22.96	0.198		
	High	917	19.73	19.69	22.71	0.187		
20MHz								
802.11n	Low	912	19.43	19.83	22.62	0.183		
	High	917	19.50	19.77	22.64	0.184		

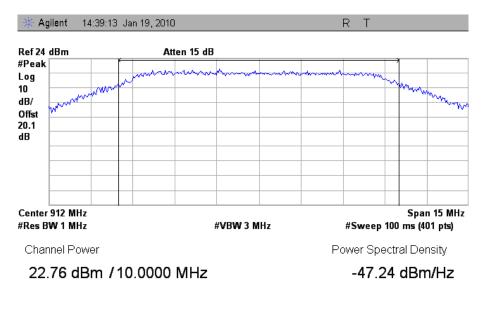
Table 37. RF Output Power Combined Test Results



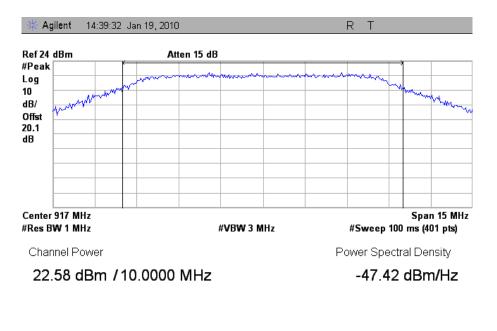
Plot 56. Output Power 907MHz Low Channel 802.11g 5MHz Bandwidth, Chain 0



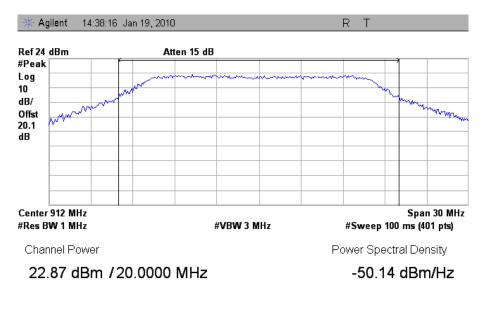
Plot 57. Output Power 912MHz Mid Channel 1, 802.11g 5MHz Bandwidth, Chain 0



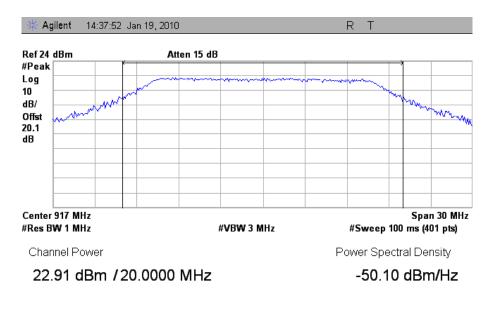
Plot 58. Output Power 917MHz Mid Channel 2, 802.11g 5MHz Bandwidth, Chain 0



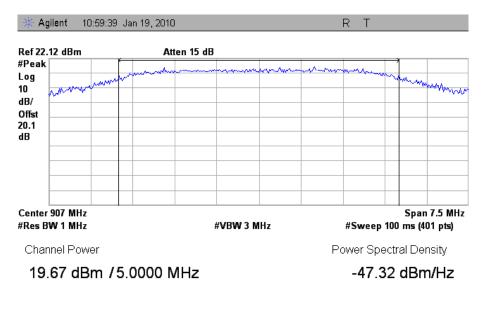
Plot 59. Output Power 922MHz High Channel, 802.11g 5MHz Bandwidth, Chain 0



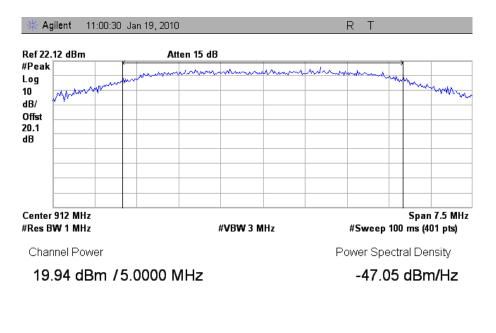
Plot 60. Output Power 912MHz Low Channel 802.11g 10MHz Bandwidth, Chain 0



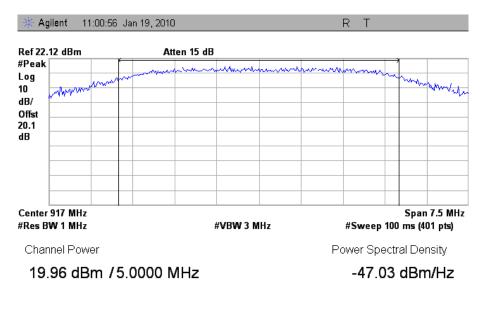
Plot 61. Output Power 917MHz High Channel 802.11g 10MHz Bandwidth, Chain 0



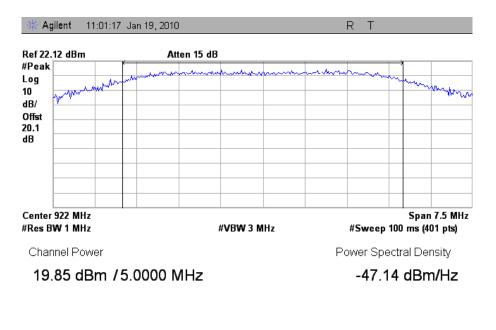
Plot 62. Output Power 912MHz Low Channel 802.11g 20MHz Bandwidth, Chain 0



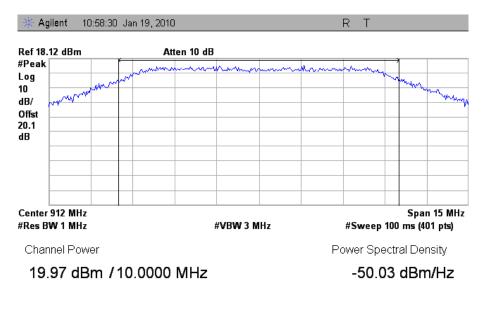
Plot 63. Output Power 917MHz High Channel 802.11g 20MHz Bandwidth, Chain 0



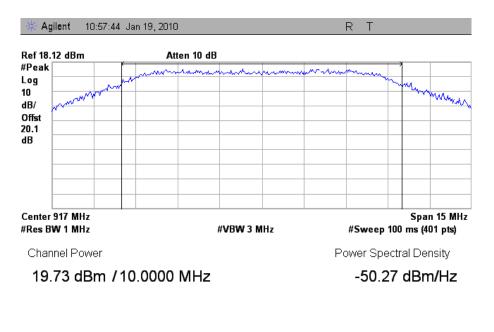
Plot 64. Output Power 907MHz Low Channel 802.11n 5MHz Bandwidth, Chain 0



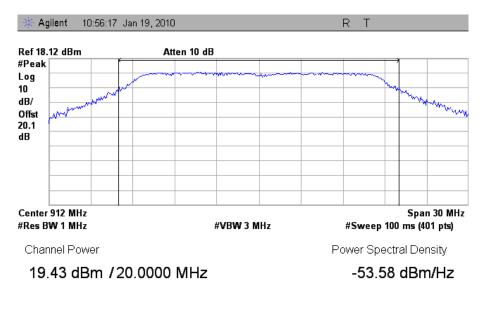
Plot 65. Output Power 912MHz Mid Channel 1, 802.11n 5MHz Bandwidth, Chain 0



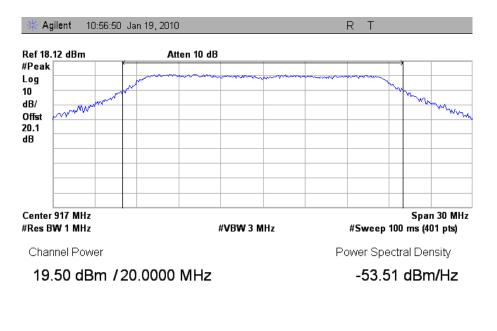
Plot 66. Output Power 917MHz Mid Channel 2, 802.11n 5MHz Bandwidth, Chain 0



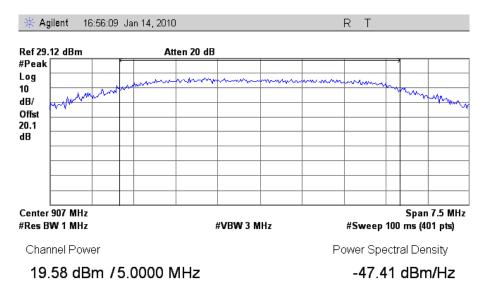
Plot 67. Output Power 922MHz High Channel 802.11n 5MHz Bandwidth, Chain 0

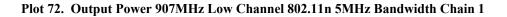


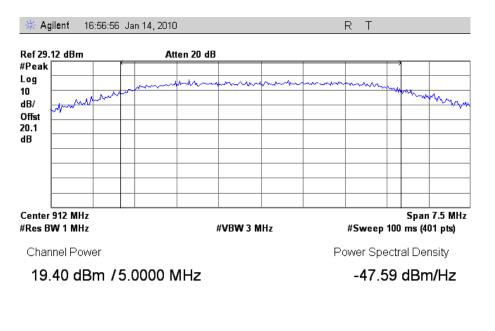
Plot 68. Output Power 912MHz Low Channel 802.11n 10MHz Bandwidth, Chain 0



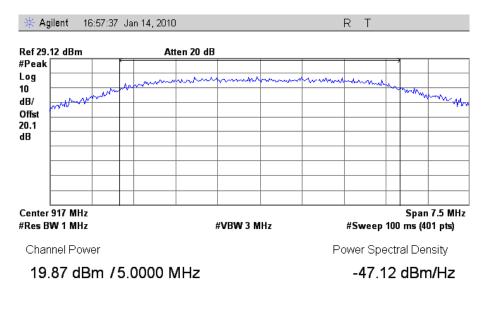
Plot 69. Output Power 917MHz High Channel 802.11n 10MHz Bandwidth, Chain 0

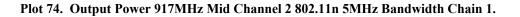


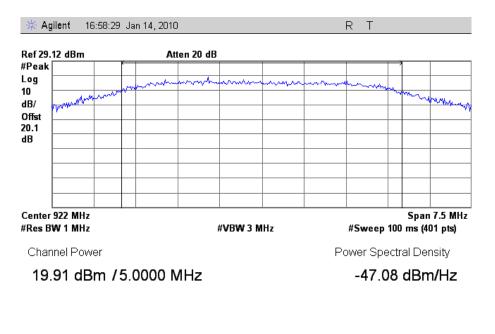

Plot 70. Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth, Chain 0



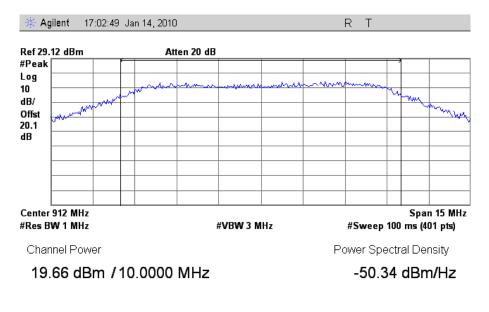
Plot 71. Output Power 917MHz High Channel 802.11n 20MHz Bandwidth, Chain 0

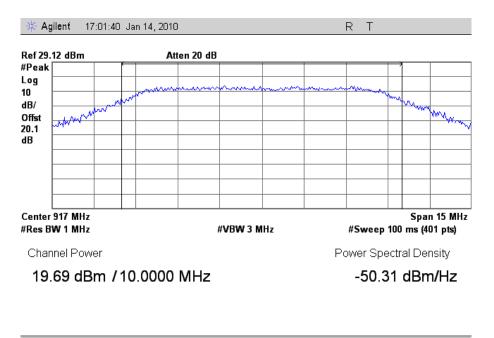




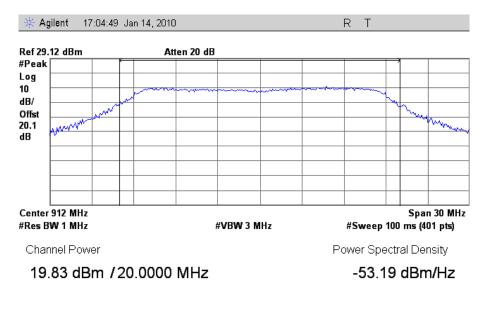


Plot 73. Output Power 912MHz Mid Channel 1 802.11n 5MHz Bandwidth Chain 1.

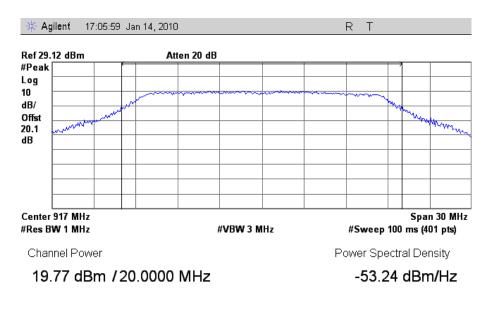




Plot 75. Output Power 922MHz High Channel 2 802.11n 5MHz Bandwidth Chain 1.



Plot 76. Output Power 912MHz Low Channel 2 802.11n 10MHz Bandwidth Chain 1.



Plot 77. Output Power 917MHz High Channel 2 802.11n 10MHz Bandwidth Chain 1.

Plot 78. Output Power 912MHz Low Channel 802.11n 20MHz Bandwidth Chain 1.

Plot 79. Output Power 917MHz High Channel 802.11n 20MHz Bandwidth Chain 1.

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(b) RF Exposure

- **RF Exposure Requirements:** §1.1307(b)(1) and §1.1307(b)(2): Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines.
- **RF Radiation Exposure Limit: §1.1310:** As specified in this section, the Maximum Permissible Exposure (MPE) Limit shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in Sec. 1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of Sec. 2.1093 of this chapter.

MPE Limit Calculation: EUT's operating frequencies @ 907-922MHz; highest conducted power = 23dBm (peak) therefore, Limit for Uncontrolled exposure: 0.6 mW/cm²

EUT maximum antenna gain = <u>13dBi Panel</u>

Equation from page 18 of OET 65, Edition 97-01

 $S = PG / 4\pi R^2$ or $R = \int PG / 4\pi S$

where, S = Power Density (1 mW/cm²) P = Power Input to antenna (199.52mW)G = Antenna Gain (19.95 numeric)

 $\mathbf{R} = (199.52*19.95/4*3.14*0.6)^{1/2} = (3981.072/7.536)^{1/2} = \mathbf{22.98cm}$

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(d) Radiated Spurious Emissions Requirements and Band Edge

Test Requirements: §15.247(d); §15.205: Emissions outside the frequency band.

§15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a).

§15.205(a): Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
¹ 0.495–0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735–2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175-6.31225	123–138	2200-2300	14.47–14.5
8.291-8.294	149.9–150.05	2310-2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2655–2900	22.01–23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975-12.52025	240–285	3345.8–3358 36.	43–36.5
12.57675–12.57725	322–335.4	3600-4400	(²)

Table 38. Restricted Bands of Operation

 1 Until February 1, 1999, this restricted band shall be 0.490 – 0.510 MHz.

² Above 38.6

Test Requirement(s): § 15.209 (a): Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in Table 39.

Frequency (MHz)	§ 15.209(a),Radiated Emission Limits (dBμV) @ 3m
30 - 88	40.00
88 - 216	43.50
216 - 960	46.00
Above 960	54.00

Table 39. F	Radiated Emissions	Limits Calculated from	m FCC Part 15, § 15.209 (a)
-------------	---------------------------	------------------------	-----------------------------

Test Procedure: The transmitter was set to the mid channel at the highest output power and placed on a 0.8 m high wooden table inside in a semi-anechoic chamber. Measurements were performed with the EUT rotated 360 degrees and varying the adjustable antenna mast with 1 m to 4 m height to determine worst case orientation for maximum emissions. Measurement were repeated the measurement at the low and highest channels.

For intentional radiators with a digital device portion which operates below 10 GHz, the spectrum was investigated as per \$15.33(a)(1) and \$15.33(a)(4); i.e., the lowest RF signal generated or used in the device up to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

In accordance with §15.35(b) the limit on the radio frequency emissions as measured using instrumentation with a peak detector function shall be 20 dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules.

EUT Field Strength Final Amplitude = Raw Amplitude – Preamp gain + Antenna Factor + Cable Loss

- **Test Results:** The EUT was compliant with the Radiated Spurious Emission limits of § 15.247(d).
- Test Engineer(s): Anderson Soungpanya

Test Date(s): 01/21/10

15.209 Radiated Emissions Limits Test Results

Frequency (MHz)	Antenna Polarity	EUT Azimuth (Degrees)	Antenna Height (cm)	Uncorrected Amplitude (dBµV)	ACF (dB/m)	CBL (dB)	Corrected Amplitude (dBµV)	Limit (dBµV)	Margin (dB)
90.36	V	212	122	28.24	9.922	2.642	30.344	43.5	-2.696
148.1	V	284	100	21.37	11.814	3.36	26.084	43.5	-6.956
31.4	V	294	100	18.26	16.96	1.29	26.05	39	-2.49
88.84	Н	257	212	29.12	8.791	2.609	30.06	43.5	-2.98
145.26	Н	110	174	23.74	11.49	3.33	28.1	43.5	-4.94
799.98	Н	200	137	18.05	20.9	6.23	34.72	46.4	-1.22

Table 40. 15.209 Radiated Emissions Limits, Test Results, 30MHz – 1GHz

Note: The EUT was tested at 3 m.

Harmonic Emissions Requirements – Radiated (802.11g 5MHz Mode)

Freq. (GHz)	Antenna Polarity (H/V)	Raw Amp. @ 3 m (Peak) / (Avg) (dBµV/m)	P.Amp (dB)	Ant. Cor. Factor (dB/m)	Cable Loss (dB)	EUT Field Strength Final Amp. (dBµV/m)	Limit Detector Peak / Avg	Limit @ 3 m (dBµV/m)	Delta (dB)
1.814	Н	76.1	34.86	30.00	1.55	72.78	Peak	74	-1.22
1.814	Н	57.27	34.86	30.00	1.55	53.95	Avg	54	-0.05
2.721	Н	60.99	34.99	32.72	2.53	61.25	Peak	74	-12.75
2.721	Н	40.51	34.99	32.72	2.53	40.77	Avg	54	-13.23
3.628	Н	44.37	34.73	32.86	2.89	45.39	Peak	74	-28.61
3.628	Н	31.24	34.73	32.86	2.89	32.26	Avg	54	-21.74
				Low (Channel 907N	AHz			
Freq. (GHz)	Antenna Polarity (H/V)	Raw Amp. @ 3 m (Peak) / (Avg) (dBµV/m)	P.Amp (dB)	Ant. Cor. Factor (dB/m)	Cable Loss (dB)	EUT Field Strength Final Amp. (dBµV/m)	Limit Detector Peak / Avg	Limit @ 3 m (dBµV/m)	Delta (dB)
1.824	Н	74.63	34.86	30.06	1.55	71.38	Peak	74	-2.62
1.824	Н	53.61	34.86	30.06	1.55	50.36	Avg	54	-3.64
2.736	Н	57.98	35.00	32.72	2.56	58.26	Peak	74	-15.74
2.736	Н	38.06	35.00	32.72	2.56	38.34	Avg	54	-15.66
3.648	Н	45.28	34.72	32.88	2.96	46.39	Peak	74	-27.61
3.648	Н	30.69	34.72	32.88	2.96	31.80	Avg	54	-22.20
				Mid (Channel 912N	/Hz			
Freq. (GHz)	Antenna Polarity (H/V)	Raw Amp. @ 3 m (Peak) / (Avg) (dBµV/m)	P.Amp (dB)	Ant. Cor. Factor (dB/m)	Cable Loss (dB)	EUT Field Strength Final Amp. (dBµV/m)	Limit Detector Peak / Avg	Limit @ 3 m (dBµV/m)	Delta (dB)
1.834	Н	67.74	34.86	30.12	1.56	64.56	Peak	74	-9.44
1.834	Н	48.16	34.86	30.12	1.56	44.98	Avg	54	-9.02
2.751	Н	56.11	35.01	32.72	2.59	56.42	Peak	74	-17.58
2.751	Н	38.03	35.01	32.72	2.59	38.34	Avg	54	-15.66
3.668	Н	45.9	34.71	32.89	3.02	47.10	Peak	74	-26.90
3.668	Н	31.84	34.71	32.89	3.02	33.04	Avg	54	-20.96
				Mid (Channel 917N	/Hz			
Freq. (GHz)	Antenna Polarity (H/V)	Raw Amp. @ 3 m (Peak) / (Avg) (dBµV/m)	P.Amp (dB)	Ant. Cor. Factor (dB/m)	Cable Loss (dB)	EUT Field Strength Final Amp. (dBµV/m)	Limit Detector Peak / Avg	Limit @ 3 m (dBµV/m)	Delta (dB)
1.844	Н	61.52	34.86	30.18	1.57	58.41	Peak	74	-15.59
1.844	Н	45.92	34.86	30.18	1.57	42.81	Avg	54	-11.19
2.766	Н	55.82	35.01	32.73	2.62	56.16	Peak	74	-17.84
2.766	Н	38.07	35.01	32.73	2.62	38.41	Avg	54	-15.59
3.688	Н	44.82	34.70	32.91	3.09	46.12	Peak	74	-27.88
3.688	Н	30.78	34.70	32.91	3.09	32.08	Avg	54	-21.92
				High	Channel 922N	MHz			

Table 41. Radiated Harmonic Emissions, 802.11g 5MHz Mode

Harmonic Emissions Requirements – Radiated (802.11g 10MHz Mode)

Freq. (GHz)	Antenna Polarity (H/V)	Raw Amp. @ 3 m (Peak) / (Avg) (dBµV/m)	P.Amp (dB)	Ant. Cor. Factor (dB/m)	Cable Loss (dB)	EUT Field Strength Final Amp. (dBµV/m)	Limit Detector Peak / Avg	Limit @ 3 m (dBµV/m)	Delta (dB)
1.824	Н	72.45	34.86	30.06	1.55	69.20	Peak	74	-4.80
1.824	Н	50.54	34.86	30.06	1.55	47.29	Avg	54	-6.71
2.736	Н	52.38	35.00	32.72	2.56	52.66	Peak	74	-21.34
2.736	Н	36.23	35.00	32.72	2.56	36.51	Avg	54	-17.49
3.648	Н	46.82	34.72	32.88	2.96	47.93	Peak	74	-26.07
3.648	Н	31.53	34.72	32.88	2.96	32.64	Avg	54	-21.36
				Low (Channel 912N	/IHz			
Freq. (GHz)	Antenna Polarity (H/V)	Raw Amp. @ 3 m (Peak) / (Avg) (dBµV/m)	P.Amp (dB)	Ant. Cor. Factor (dB/m)	Cable Loss (dB)	EUT Field Strength Final Amp. (dBµV/m)	Limit Detector Peak / Avg	Limit @ 3 m (dBµV/m)	Delta (dB)
1.834	Н	65.45	34.86	30.12	1.56	62.27	Peak	74	-11.73
1.834	Н	44.79	34.86	30.12	1.56	41.61	Avg	54	-12.39
2.751	Н	52.26	35.01	32.72	2.59	52.57	Peak	74	-21.43
2.751	Н	35.79	35.01	32.72	2.59	36.10	Avg	54	-17.90
3.668	Н	44.28	34.71	32.89	3.02	45.48	Peak	74	-28.52
3.668	Н	30.21	34.71	32.89	3.02	31.41	Avg	54	-22.59
				High (Channel 917N	ИНz			

Table 42. Radiated Harmonic Emissions, 802.11g 10MHz Mode

Harmonic Emissions Requirements – Radiated (802.11g 20MHz Mode)

Freq. (GHz)	Antenna Polarity (H/V)	Raw Amp. @ 3 m (Peak) / (Avg) (dBµV/m)	P.Amp (dB)	Ant. Cor. Factor (dB/m)	Cable Loss (dB)	EUT Field Strength Final Amp. (dBµV/m)	Limit Detector Peak / Avg	Limit @ 3 m (dBµV/m)	Delta (dB)
1.824	Н	66.71	34.86	30.06	1.55	63.46	Peak	74	-10.54
1.824	Н	50.17	34.86	30.06	1.55	46.92	Avg	54	-7.08
2.736	Н	50.58	35.00	32.72	2.56	50.86	Peak	74	-23.14
2.736	Н	34.75	35.00	32.72	2.56	35.03	Avg	54	-18.97
3.648	Н	45.28	34.72	32.88	2.96	46.39	Peak	74	-27.61
3.648	Н	30.74	34.72	32.88	2.96	31.85	Avg	54	-22.15
				Low (Channel 912N	/IHz			
Freq. (GHz)	Antenna Polarity (H/V)	Raw Amp. @ 3 m (Peak) / (Avg) (dBµV/m)	P.Amp (dB)	Ant. Cor. Factor (dB/m)	Cable Loss (dB)	EUT Field Strength Final Amp. (dBµV/m)	Limit Detector Peak / Avg	Limit @ 3 m (dBµV/m)	Delta (dB)
1.834	Н	64.41	34.86	30.12	1.56	61.23	Peak	74	-12.77
1.834	Н	45.98	34.86	30.12	1.56	42.80	Avg	54	-11.20
2.751	Н	49.47	35.01	32.72	2.59	49.78	Peak	74	-24.22
2.751	Н	34.31	35.01	32.72	2.59	34.62	Avg	54	-19.38
3.668	Н	30.08	34.71	32.89	3.02	31.28	Peak	74	-42.72
				High (Channel 917N	MHz			

Table 43. Radiated Harmonic Emissions, 802.11g 20MHz Mode

Harmonic Emissions Requirements – Radiated (802.11n 5MHz Mode)

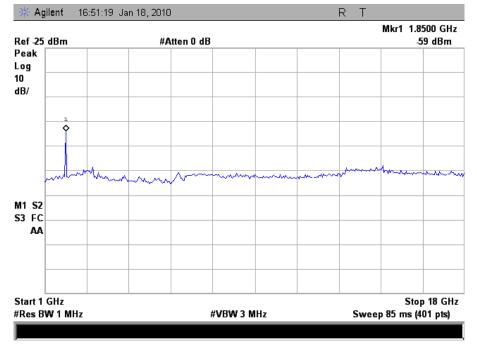
Freq. (GHz)	Antenna Polarity (H/V)	Raw Amp. @ 3 m (Peak) / (Avg) (dBµV/m)	P.Amp (dB)	Ant. Cor. Factor (dB/m)	Cable Loss (dB)	EUT Field Strength Final Amp. (dBµV/m)	Limit Detector Peak / Avg	Limit @ 3 m (dBµV/m)	Delta (dB)
1.814	Н	73.14	34.86	30.00	1.55	69.82	Peak	74	-4.18
1.814	Н	51.32	34.86	30.00	1.55	48.00	Avg	54	-6.00
2.721	Н	63.33	34.99	32.72	2.53	63.59	Peak	74	-10.41
2.721	Н	42.23	34.99	32.72	2.53	42.49	Avg	54	-11.51
3.628	Н	48.44	34.73	32.86	2.89	49.46	Peak	74	-24.54
3.628	Н	31.83	34.73	32.86	2.89	32.85	Avg	54	-21.15
				Low (Channel 907N	AHz			
Freq. (GHz)	Antenna Polarity (H/V)	Raw Amp. @ 3 m (Peak) / (Avg) (dBµV/m)	P.Amp (dB)	Ant. Cor. Factor (dB/m)	Cable Loss (dB)	EUT Field Strength Final Amp. (dBµV/m)	Limit Detector Peak / Avg	Limit @ 3 m (dBµV/m)	Delta (dB)
1.824	Н	68.31	34.86	30.06	1.55	65.06	Peak	74	-8.94
1.824	Н	45.02	34.86	30.06	1.55	41.77	Avg	54	-12.23
2.736	Н	60.12	35.00	32.72	2.56	60.40	Peak	74	-13.60
2.736	Н	38.13	35.00	32.72	2.56	38.41	Avg	54	-15.59
3.648	Н	48.37	34.72	32.88	2.96	49.48	Peak	74	-24.52
3.648	Н	31.76	34.72	32.88	2.96	32.87	Avg	54	-21.13
				Mid (Channel 912N	/Hz			
Freq. (GHz)	Antenna Polarity (H/V)	Raw Amp. @ 3 m (Peak) / (Avg) (dBµV/m)	P.Amp (dB)	Ant. Cor. Factor (dB/m)	Cable Loss (dB)	EUT Field Strength Final Amp. (dBµV/m)	Limit Detector Peak / Avg	Limit @ 3 m (dBµV/m)	Delta (dB)
1.834	Н	65.39	34.86	30.12	1.56	62.21	Peak	74	-11.79
1.834	Н	42.32	34.86	30.12	1.56	39.14	Avg	54	-14.86
2.751	Н	58.58	35.01	32.72	2.59	58.89	Peak	74	-15.11
2.751	Н	37.09	35.01	32.72	2.59	37.40	Avg	54	-16.60
3.668	Н	49.32	34.71	32.89	3.02	50.52	Peak	74	-23.48
3.668	Н	31.71	34.71	32.89	3.02	32.91	Avg	54	-21.09
				Mid (Channel 917N	/Hz			
Freq. (GHz)	Antenna Polarity (H/V)	Raw Amp. @ 3 m (Peak) / (Avg) (dBµV/m)	P.Amp (dB)	Ant. Cor. Factor (dB/m)	Cable Loss (dB)	EUT Field Strength Final Amp. (dBµV/m)	Limit Detector Peak / Avg	Limit @ 3 m (dBµV/m)	Delta (dB)
1.844	Н	64.78	34.86	30.18	1.57	61.67	Peak	74	-12.33
1.844	Н	43.05	34.86	30.18	1.57	39.94	Avg	54	-14.06
2.766	Н	56.81	35.01	32.73	2.62	57.15	Peak	74	-16.85
2.766	Н	38.25	35.01	32.73	2.62	38.59	Avg	54	-15.41
3.688	Н	44.32	34.70	32.91	3.09	45.62	Peak	74	-28.38
3.688	Н	30.29	34.70	32.91	3.09	31.59	Avg	54	-22.41
3.688 H 30.29 34.70 32.91 3.09 31.59 Avg 54 -22.41 High Channel 922MHz									

Table 44. Radiated Harmonic Emissions, 802.11n 5MHz Mode

Harmonic Emissions Requirements – Radiated (802.11n 10MHz Mode)

Freq. (GHz)	Antenna Polarity (H/V)	Raw Amp. @ 3 m (Peak) / (Avg) (dBµV/m)	P.Amp (dB)	Ant. Cor. Factor (dB/m)	Cable Loss (dB)	EUT Field Strength Final Amp. (dBµV/m)	Limit Detector Peak / Avg	Limit @ 3 m (dBµV/m)	Delta (dB)
1.824	Н	59.05	34.86	30.06	1.55	55.80	Peak	74	-18.20
1.824	Н	40.72	34.86	30.06	1.55	37.47	Avg	54	-16.53
2.736	Н	52.96	35.00	32.72	2.56	53.24	Peak	74	-20.76
2.736	Н	36.91	35.00	32.72	2.56	37.19	Avg	54	-16.81
3.648	Н	45.2	34.72	32.88	2.96	46.31	Peak	74	-27.69
3.648	Н	30.84	34.72	32.88	2.96	31.95	Avg	54	-22.05
				Low (Channel 912N	/IHz			
Freq. (GHz)	Antenna Polarity (H/V)	Raw Amp. @ 3 m (Peak) / (Avg) (dBµV/m)	P.Amp (dB)	Ant. Cor. Factor (dB/m)	Cable Loss (dB)	EUT Field Strength Final Amp. (dBµV/m)	Limit Detector Peak / Avg	Limit @ 3 m (dBµV/m)	Delta (dB)
1.834	Н	60.87	34.86	30.12	1.56	57.69	Peak	74	-16.31
1.834	Н	39.47	34.86	30.12	1.56	36.29	Avg	54	-17.71
2.751	Н	54.55	35.01	32.72	2.59	54.86	Peak	74	-19.14
2.751	Н	36.83	35.01	32.72	2.59	37.14	Avg	54	-16.86
3.668	Н	45.81	34.71	32.89	3.02	47.01	Peak	74	-26.99
3.668	Н	30.67	34.71	32.89	3.02	31.87	Avg	54	-22.13
				High	Channel 917N	ИНz			

Table 45. Radiated Harmonic Emissions, 802.11n 10MHz Mode



Harmonic Emissions Requirements – Radiated (802.11n 20MHz Mode)

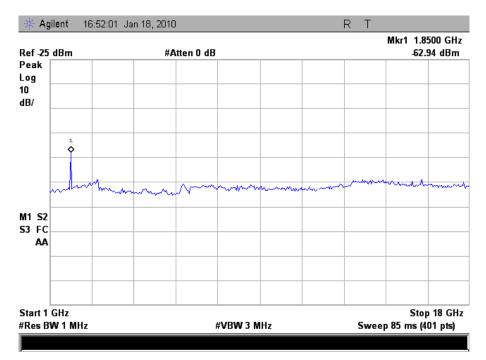
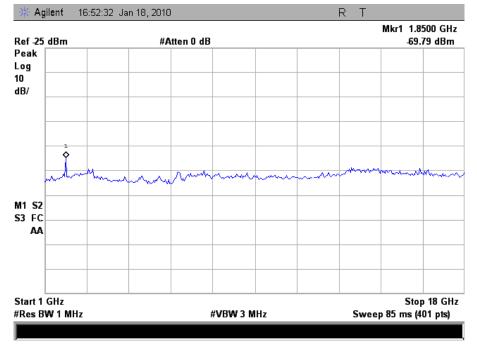
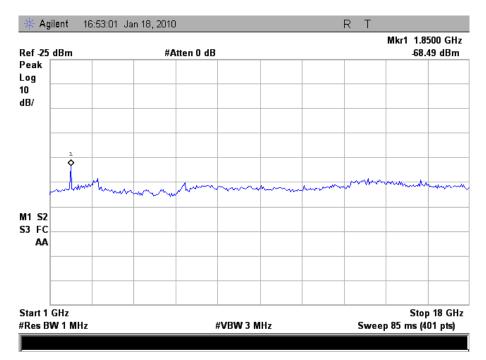

Freq. (GHz)	Antenna Polarity (H/V)	Raw Amp. @ 3 m (Peak) / (Avg) (dBµV/m)	P.Amp (dB)	Ant. Cor. Factor (dB/m)	Cable Loss (dB)	EUT Field Strength Final Amp. (dBµV/m)	Limit Detector Peak / Avg	Limit @ 3 m (dBµV/m)	Delta (dB)
1.824	Н	62.22	34.86	30.06	1.55	58.97	Peak	74	-15.03
1.824	Н	44.98	34.86	30.06	1.55	41.73	Avg	54	-12.27
2.736	Н	49.03	35.00	32.72	2.56	49.31	Peak	74	-24.69
2.736	Н	34.59	35.00	32.72	2.56	34.87	Avg	54	-19.13
3.648	Н	44.29	34.72	32.88	2.96	45.40	Peak	74	-28.60
3.648	Н	30.48	34.72	32.88	2.96	31.59	Avg	54	-22.41
				Low (Channel 912N	/IHz			
Freq. (GHz)	Antenna Polarity (H/V)	Raw Amp. @ 3 m (Peak) / (Avg) (dBµV/m)	P.Amp (dB)	Ant. Cor. Factor (dB/m)	Cable Loss (dB)	EUT Field Strength Final Amp. (dBµV/m)	Limit Detector Peak / Avg	Limit @ 3 m (dBµV/m)	Delta (dB)
1.834	Н	57.55	34.86	30.12	1.56	54.37	Peak	74	-19.63
1.834	Н	39.34	34.86	30.12	1.56	36.16	Avg	54	-17.84
2.751	Н	49.39	35.01	32.72	2.59	49.70	Peak	74	-24.30
2.751	Н	34.33	35.01	32.72	2.59	34.64	Avg	54	-19.36
3.668	Н	45.25	34.71	32.89	3.02	46.45	Peak	74	-27.55
3.668	Н	30.38	34.71	32.89	3.02	31.58	Avg	54	-22.42
				High (Channel 917N	ИНz			

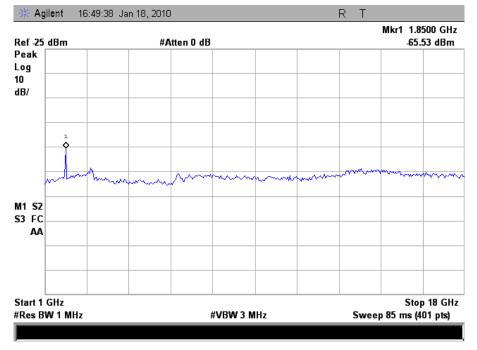
Table 46. Radiated Harmonic Emissions, 802.11n 20MHz Mode



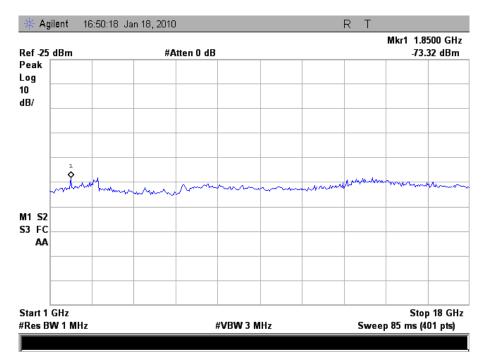
Plot 80. Radiated Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth (1-18GHz)



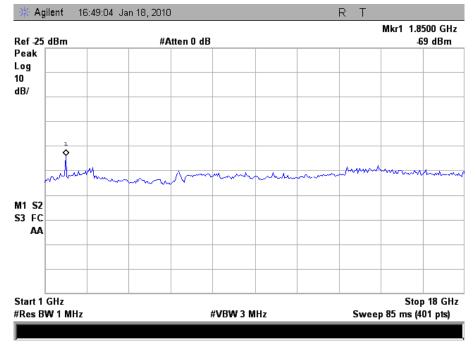
Plot 81. Radiated Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth (1-18GHz)



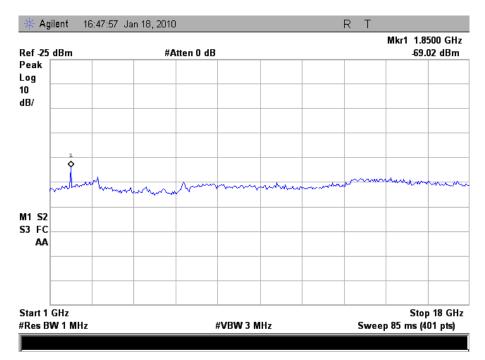
Plot 82. Radiated Spurious, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth (1-18GHz)



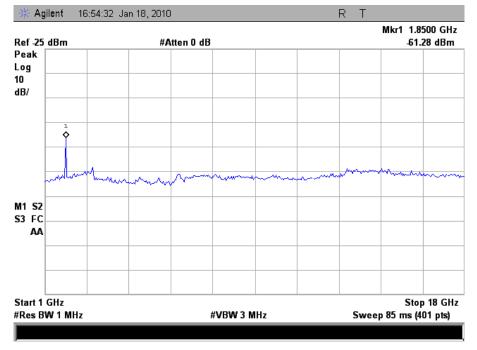
Plot 83. Radiated Spurious, 922MHz High Channel, 802.11g, 5MHz Bandwidth (1-18GHz)



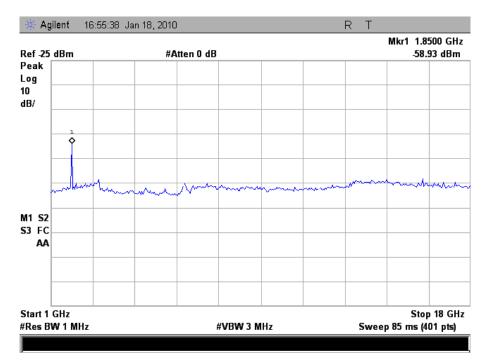
Plot 84. Radiated Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth (1-18GHz)



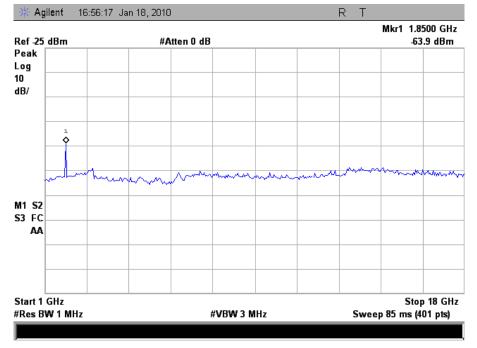
Plot 85. Radiated Spurious, 917MHz High Channel, 802.11g, 10MHz Bandwidth (1-18GHz)



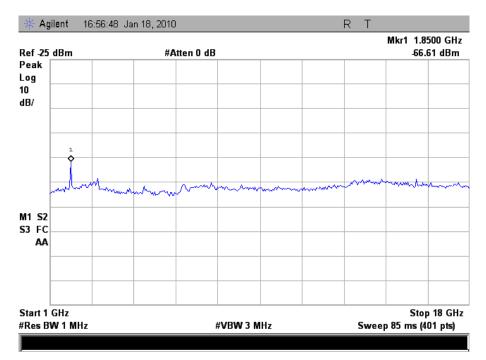
Plot 86. Radiated Spurious, 912MHz Low Channel, 802.11g, 20MHz Bandwidth (1-18GHz)



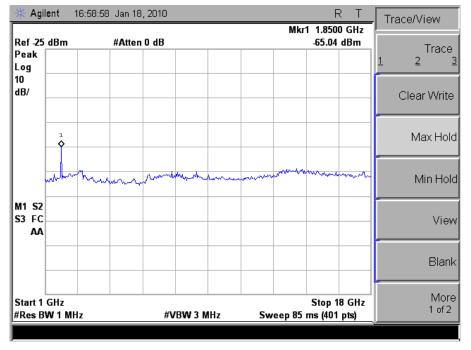
Plot 87. Radiated Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth (1-18GHz)



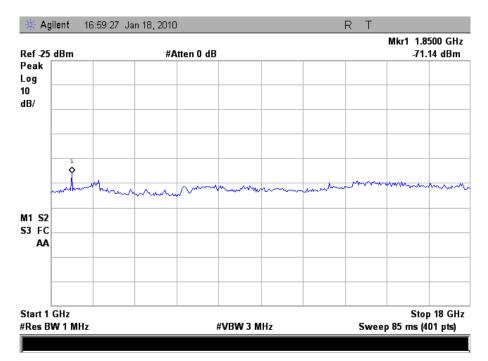
Plot 88. Radiated Spurious, 907MHz Low Channel, 802.11n, 5MHz Bandwidth (1-18GHz)



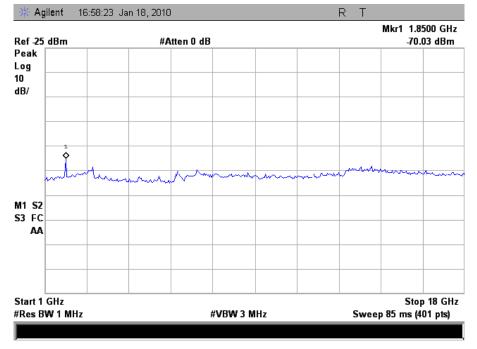
Plot 89. Radiated Spurious, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth (1-18GHz)



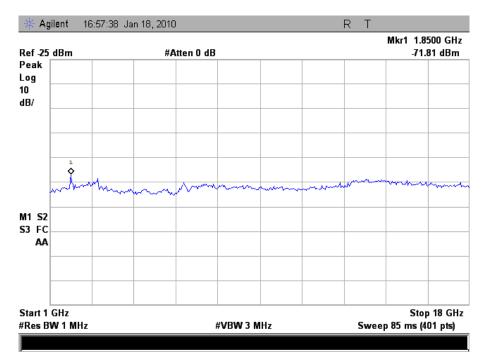
Plot 90. Radiated Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth (1-18GHz)



Plot 91. Radiated Spurious, 922MHz High Channel, 802.11n, 5MHz Bandwidth (1-18GHz)



Plot 92. Radiated Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth (1-18GHz)



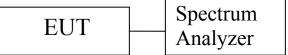
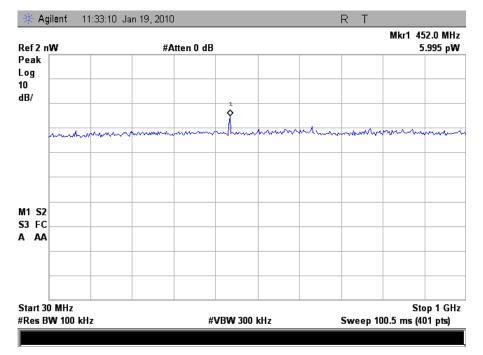
Plot 93. Radiated Spurious, 917MHz High Channel, 802.11n, 10MHz Bandwidth (1-18GHz)

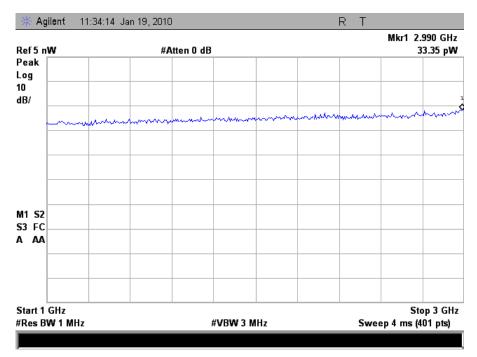
Plot 94. Radiated Spurious, 912MHz Low Channel, 802.11n, 20MHz Bandwidth (1-18GHz)

Plot 95. Radiated Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth (1-18GHz)

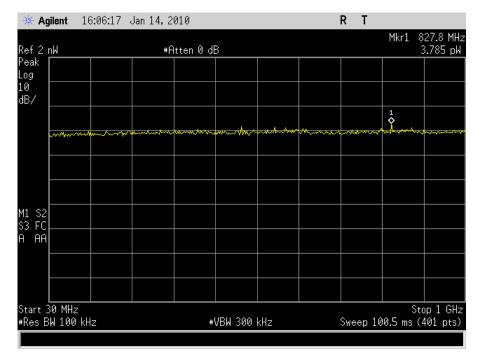
Electromagnetic Compatibility Criteria for Intentional Radiators

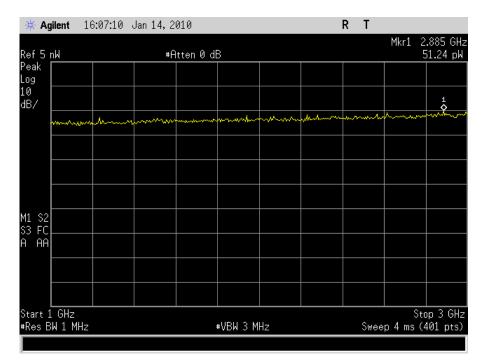
RSS-GEN	Receiver Spurious Emis	ssions Requirements						
Test Requirements:	The following receiver spurious emission limits shall be complied with:							
	(a) If a radiated measurement Table 47.	is made, all spurious emissions	shall comply with the limits of					
	Spurious Frequency (MHz)	Field Strength (microvolt/m at 3 metres)						
	30-88	100						
	88-216	150	1					
	216 - 960	200						
	Above 960	500						
Test Procedures:	terminals shall exceed 2 n MHz, or 5 nanowatts above The EUT was programmed for antenna port of the EUT. 100	ent is made, no spurious outpunanowatts per any 4 kHz spuriove 1 GHz. r receive mode only. Conducte kHz resolution bandwidth was	t signals appearing at the antenna us frequency in the band 30-1000 d measurements were taken at the s used from 30 MHz - 1 GHz and					
Test Results:	1MHz resolution was used for measurements done above 1 GHz. All plots are corrected for cable loss. Equipment complies with the Receiver Spurious Emissions Requirements of RSS-GEN.							
Test Engineer(s):	Anderson Soungpanya							
Test Date(s):	1/14/09 & 1/19/10							


Figure 5. Block Diagram, Conducted Receiver Spurious Emissions Test Setup

Conducted Receiver Spurious Emissions


Plot 96. Receiver Spurious Emission, 30MHz - 1 GHz, Chain 0


Plot 97. Receiver Spurious Emission, 1 GHz – 3 GHz, Chain 0

Conducted Receiver Spurious Emissions

Plot 98. Receiver Spurious Emission, 30MHz - 1 GHz, Chain 1

Plot 99. Receiver Spurious Emission, 1 GHz – 3GHz, Chain 1

Electromagnetic Compatibility Criteria for Intentional Radiators

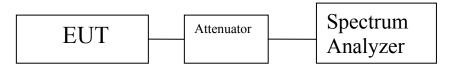
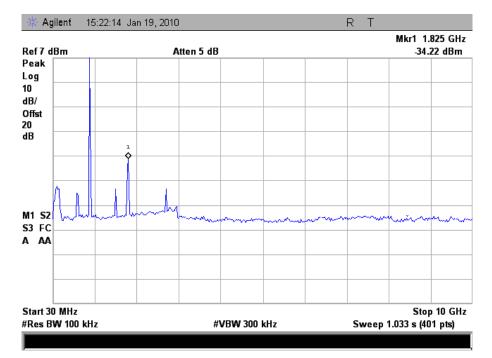
§ 15.247(d) RF Conducted Spurious Emissions Requirements and Band Edge

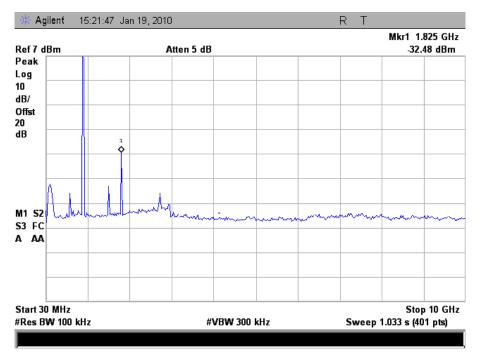
- **Test Requirement:** 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at leas 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- **Test Procedure:** For intentional radiators with a digital device portion which operates below 10 GHz, the spectrum was investigated as per §15.33(a)(1) and §15.33(a)(4); i.e., the lowest RF signal generated or used in the device up to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

A conducted version of the EUT was provided with an N connector at the antenna port. The spectrum analyzer was set to a 100 kHz resolution bandwidth and 300 kHz video bandwidth. Measurements were taken at antenna port. Plots are corrected for external attenuation and cable loss.

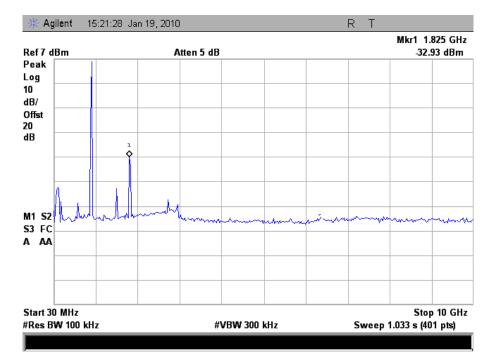
See following pages for detailed test results with RF Conducted Spurious Emissions.

- Test Results: The EUT was compliant with the Conducted Spurious Emission limits of §15.247(d).
- Test Engineer(s): Anderson Soungpanya
- **Test Date(s):** 01/21/10

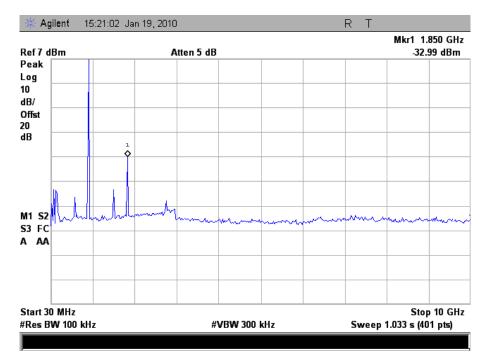




Figure 6. Block Diagram, Conducted Spurious Emissions Test Setup

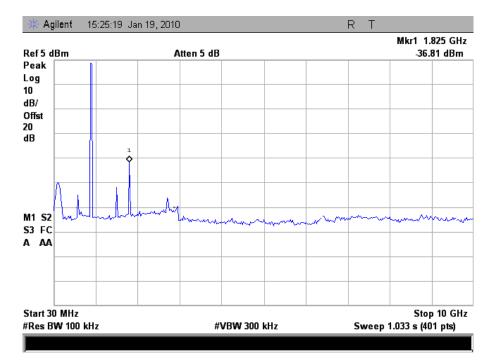
Conducted Spurious Emissions Test Results



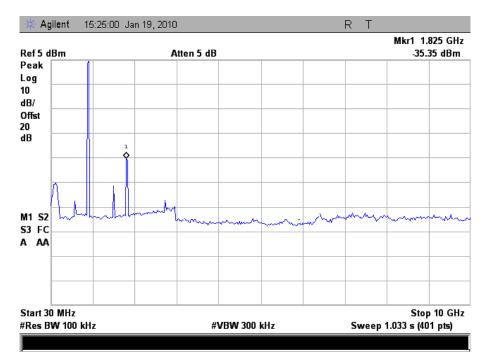
Plot 100. Conducted Spurious, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)



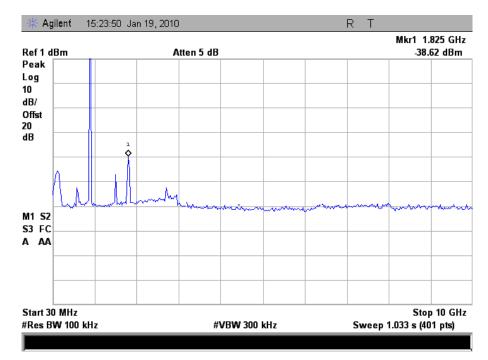
Plot 101. Conducted Spurious, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)



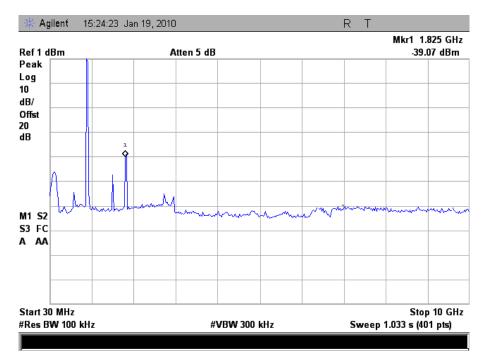
Plot 102. Conducted Spurious, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)



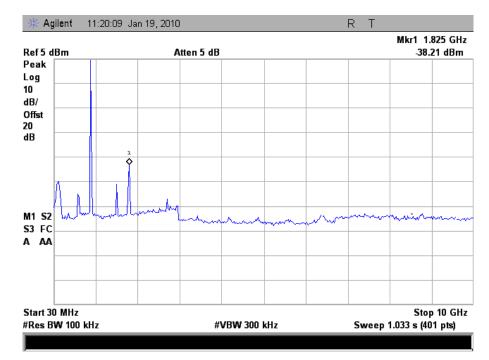
Plot 103. Conducted Spurious, 922MHz High Channel, 802.11g, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)



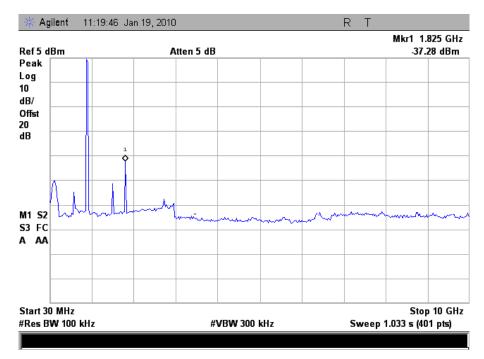
Plot 104. Conducted Spurious, 912MHz Low Channel, 802.11g, 10MHz Bandwidth, Chain 0 (30MHz-10GHz)



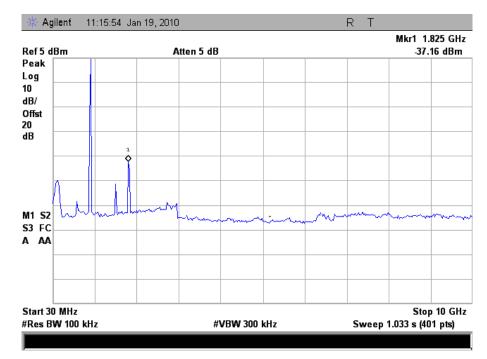
Plot 105. Conducted Spurious, 917MHz High Channel, 802.11g, 10MHz Bandwidth, Chain 0 (30MHz-10GHz)



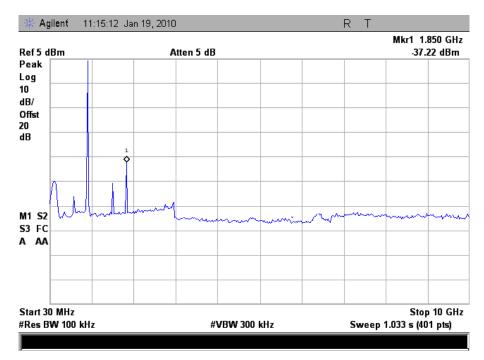
Plot 106. Conducted Spurious, 912MHz Low Channel, 802.11g, 20MHz Bandwidth, Chain 0 (30MHz-10GHz)



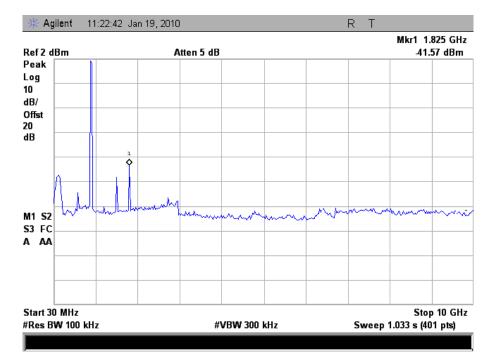
Plot 107. Conducted Spurious, 917MHz High Channel, 802.11g, 20MHz Bandwidth, Chain 0 (30MHz-10GHz)



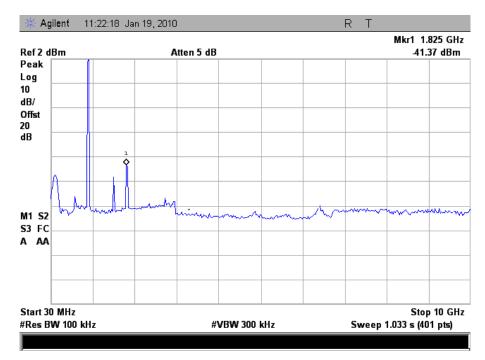
Plot 108. Conducted Spurious, 907MHz Low Channel, 802.11n, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)



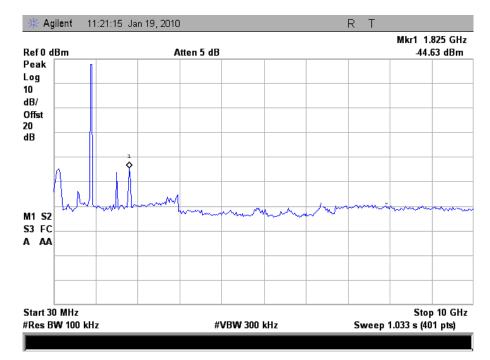
Plot 109. Conducted Spurious, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)



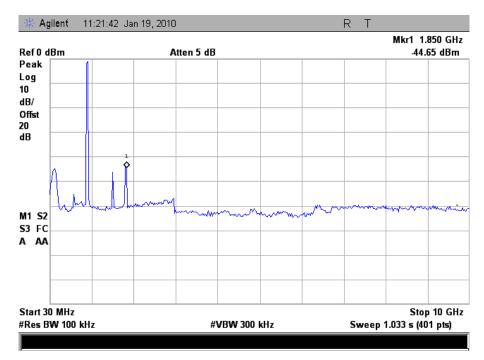
Plot 110. Conducted Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)



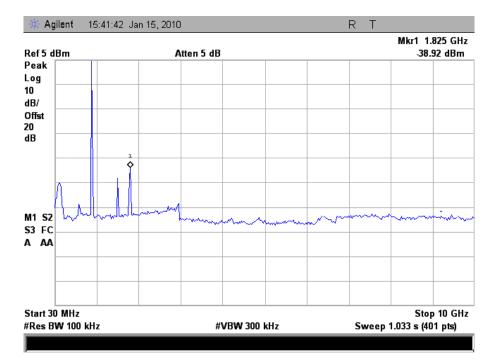
Plot 111. Conducted Spurious, 922MHz High Channel, 802.11n, 5MHz Bandwidth, Chain 0 (30MHz-10GHz)



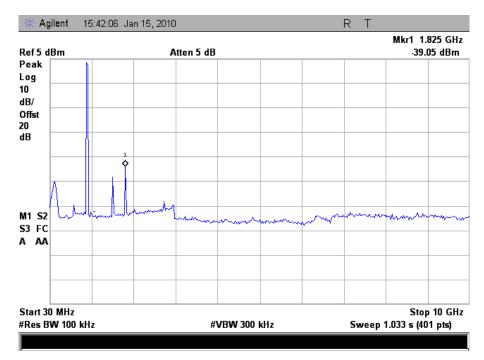
Plot 112. Conducted Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth, Chain 0 (30MHz-10GHz)



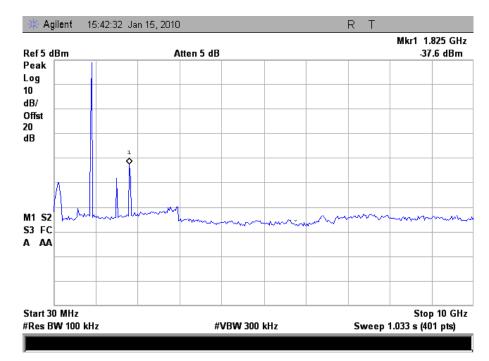
Plot 113. Conducted Spurious, 917MHz High Channel, 802.11n, 10MHz Bandwidth, Chain 0 (30MHz-10GHz)



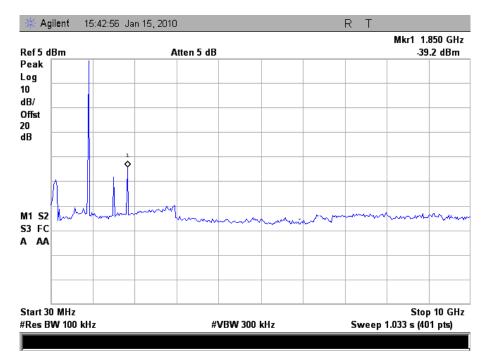
Plot 114. Conducted Spurious, 912MHz Low Channel, 802.11n, 20MHz Bandwidth, Chain 0 (30MHz-10GHz)



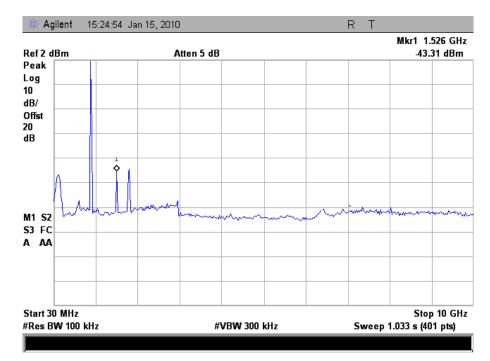
Plot 115. Conducted Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth, Chain 0 (30MHz-10GHz)



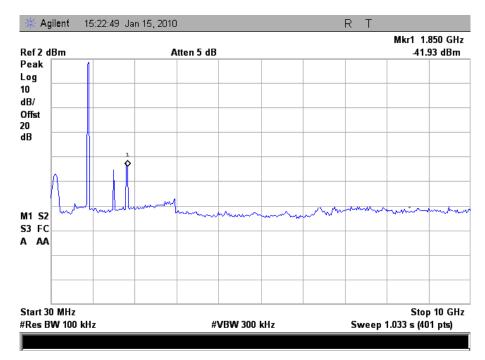
Plot 116. Conducted Spurious, 907MHz Low Channel, 802.11n, 5MHz Bandwidth, Chain 1 (30MHz-10GHz)



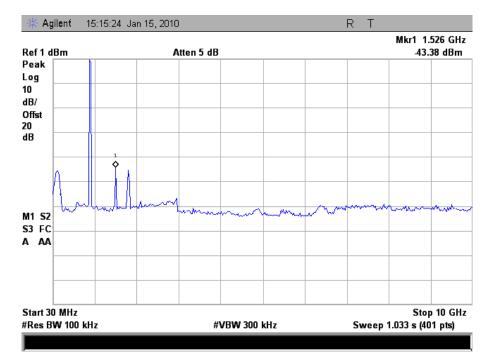
Plot 117. Conducted Spurious, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth, Chain 1 (30MHz-10GHz)



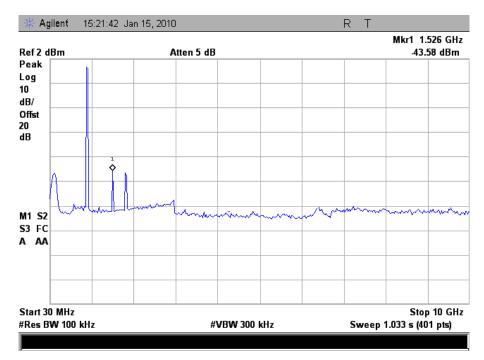
Plot 118. Conducted Spurious, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth, Chain 1 (30MHz-10GHz)



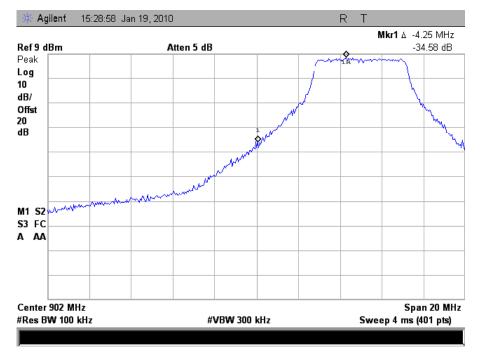
Plot 119. Conducted Spurious, 922MHz High Channel, 802.11n, 5MHz Bandwidth, Chain 1 (30MHz-10GHz)



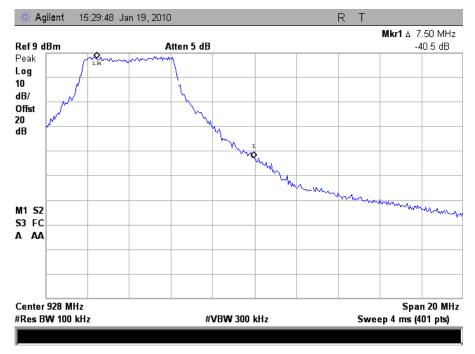
Plot 120. Conducted Spurious, 912MHz Low Channel, 802.11n, 10MHz Bandwidth, Chain 1 (30MHz-10GHz)



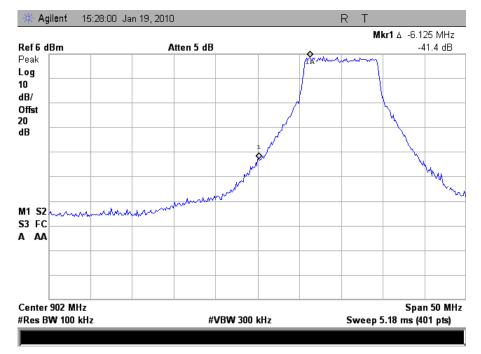
Plot 121. Conducted Spurious, 917MHz High Channel, 802.11n, 10MHz Bandwidth, Chain 1 (30MHz-10GHz)



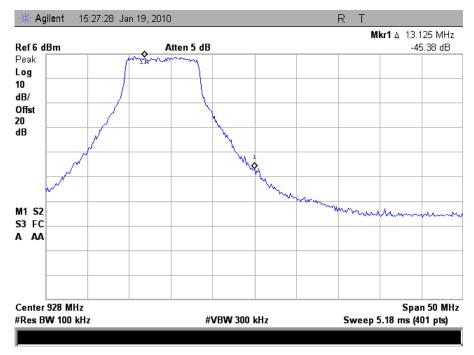
Plot 122. Conducted Spurious, 912MHz Low Channel, 802.11n, 20MHz Bandwidth, Chain 1 (30MHz-10GHz)



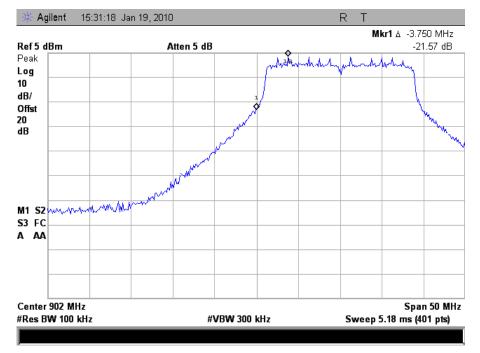
Plot 123. Conducted Spurious, 917MHz High Channel, 802.11n, 20MHz Bandwidth, Chain 1 (30MHz-10GHz)



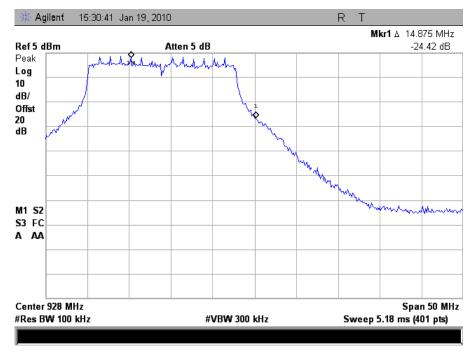
Plot 124. Conducted Band Edge, 802.11g 5MHz Mode Low - Chain 0



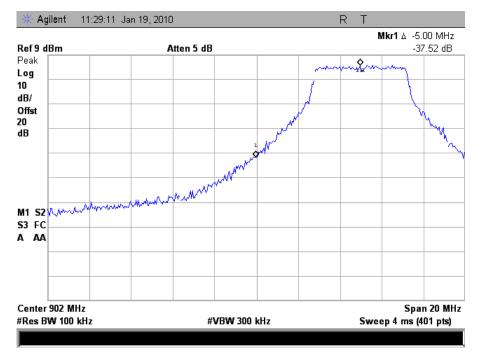
Plot 125. Conducted Band Edge, 802.11g 5MHz Mode High - Chain 0



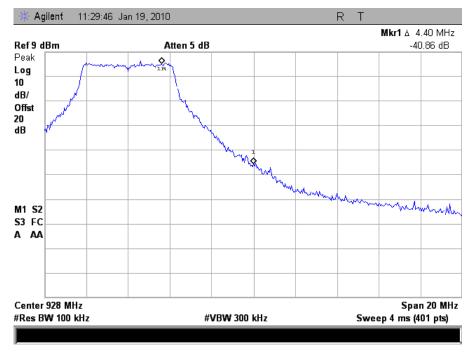
Plot 126. Conducted Band Edge, 802.11g 10MHz Mode Low - Chain 0



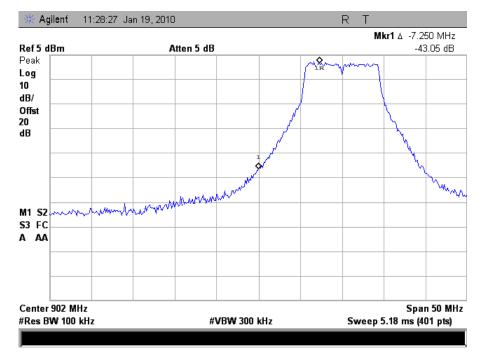
Plot 127. Conducted Band Edge, 802.11g 10MHz Mode High – Chain 0



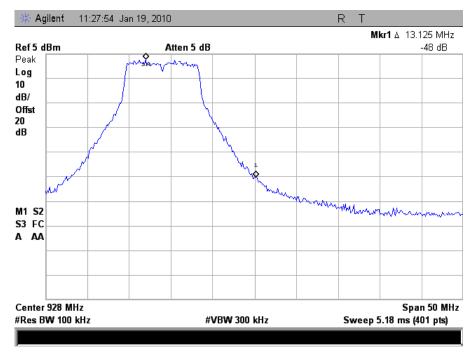
Plot 128. Conducted Band Edge, 802.11g 20MHz Mode Low - Chain 0



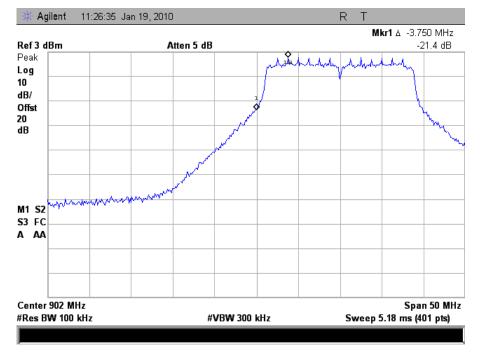
Plot 129. Conducted Band Edge, 802.11g 20MHz Mode High - Chain 0



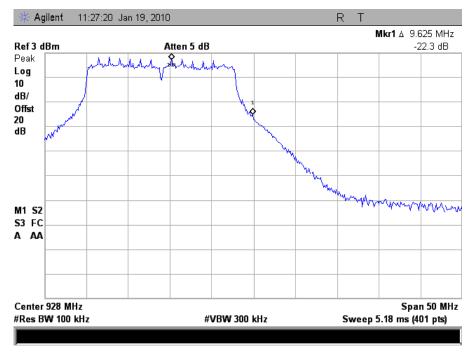
Plot 130. Conducted Band Edge, 802.11n 5MHz Mode Low - Chain 0



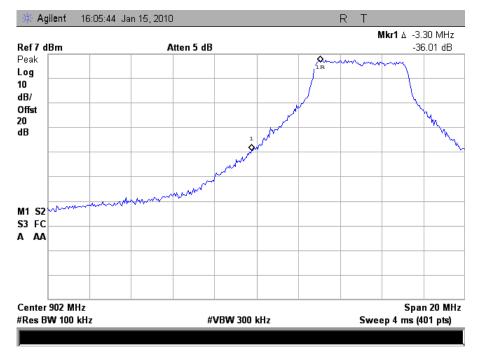
Plot 131. Conducted Band Edge, 802.11n 5MHz Mode High - Chain 0



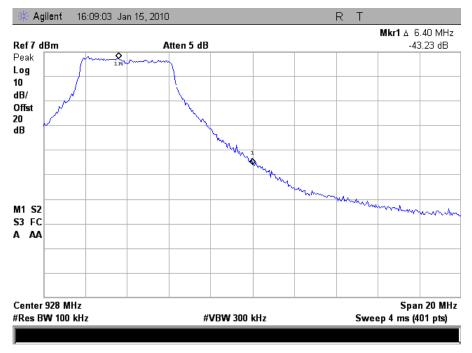
Plot 132. Conducted Band Edge, 802.11n 10MHz Mode Low - Chain 0



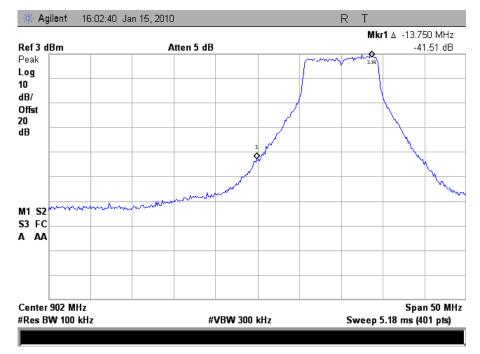
Plot 133. Conducted Band Edge, 802.11n 10MHz Mode High – Chain 0



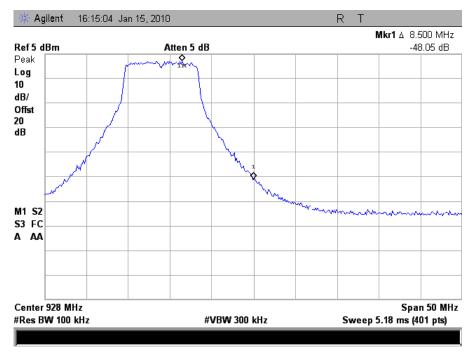
Plot 134. Conducted Band Edge, 802.11n 20MHz Mode Low - Chain 0



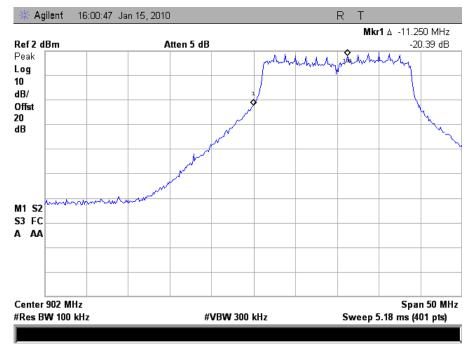
Plot 135. Conducted Band Edge, 802.11n 20MHz Mode High – Chain 0



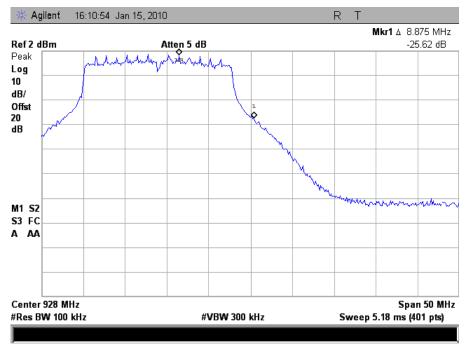
Plot 136. Conducted Band Edge, 802.11n 5MHz Mode Low - Chain 1



Plot 137. Conducted Band Edge, 802.11n 5MHz Mode High – Chain 1



Plot 138. Conducted Band Edge, 802.11n 10MHz Mode Low - Chain 1



Plot 139. Conducted Band Edge, 802.11n 10MHz Mode High – Chain 1

Plot 140. Conducted Band Edge, 802.11n 20MHz Mode Low - Chain 1

Plot 141. Conducted Band Edge, 802.11n 20MHz Mode High – Chain 1

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(e) Peak Power Spectral Density

Test Requirements:	§15.247(e): For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of § 15.247(b).
Test Procedure:	The transmitter was connected directly to a Spectrum Analyzer through an attenuator. The power level was set to the maximum level. A RBW of 1 MHz and VBW of 3 MHz were used to determine the peak emissions within the band. The Spectrum analyzer was then set to a RBW of 3 kHz and VBW was set to 10 kHz. The SPAN of the analyzer was set to 1 MHz with a 333.3 second sweep. Measurements were carried out at the low, mid and high channels. Since the EUT is deploying a system with a 13dBi Panel Antenna the power spectral density limit was reduced in accordance to §15.247(b) to 1 dBm.
Test Results:	The EUT was compliant with the peak power spectral density limits of § 15.247 (e).
	The peak power spectral density was determined from plots on the following page(s).
Test Engineer:	Anderson Soungpanya
Test Date:	01/21/10

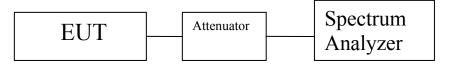


Figure 7. Block Diagram, Peak Power Spectral Density Test Setup

Peak Power Spectral Density				
Carrier Frequency Measured Spectral Density				
Channel	(MHz)	dBm	Limit	
Low	907	-3.268	1.00	
Mid	912	-2.705	1.00	
Mid	917	-4.033	1.00	
High	922	-3.680	1.00	

Table 48. Peak Power Spectral Density 802.11g (5MHz) Mode Test Results - Chain 0

Peak Power Spectral Density				
Carrier Frequency Measured Spectral Density				
Channel	(MHz)	dBm	Limit	
Low	912	-6.244	1.00	
High	917	-6.710	1.00	

Table 49.	Peak Power S	nectral Density	802.11g	(10MHz)	Mode Te	st Results – Chain (Ð
1 abic 17.	I can I ower b	peetral Density	002.115	(1011112)	intout it	st itesuits Cham (

Peak Power Spectral Density				
Carrier Frequency Measured Spectral Density				
Channel	(MHz)	dBm	Limit	
Low	912	-9.570	1.00	
High	917	-9.809	1.00	

Table 50. Peak Power Spectral Density 802.11g (20MHz) Mode Test Results - Chain 0

Peak Power Spectral Density				
Carrier Frequency Measured Spectral Density				
Channel	(MHz)	dBm	Limit	
Low	907	-5.669	1.00	
Mid	912	-3.988	1.00	
Mid	917	-6.955	1.00	
High	922	-6.881	1.00	

Table 51. Peak Power Spectral Density 802.11n (5MHz) Mode Test Results - Chain 0

Peak Power Spectral Density				
Carrier Frequency Measured Spectral Density				
Channel	(MHz)	dBm	Limit	
Low	912	-9.437	1.00	
High	917	-9.811	1.00	

Peak Power Spectral Density				
Carrier Frequency Measured Spectral Density				
Channel	(MHz)	dBm	Limit	
Low	912	-6.934	1.00	
High	917	-12.37	1.00	

Table 53. Peak Power Spectral Density 802.11n (20MHz) Mode Test Results - Chain 0

Peak Power Spectral Density				
Carrier	Carrier Frequency Measured Spectral Density			
Channel	(MHz)	dBm	Limit	
Low	907	-6.755	1.00	
Mid	912	-6.171	1.00	
Mid	917	-6.428	1.00	
High	922	-6.791	1.00	

Table 54. Peak Power Spectral Density 802.11n (5MHz) Mode Test Results - Chain 1

Peak Power Spectral Density				
Carrier Frequency Measured Spectral Density				
Channel	(MHz)	dBm	Limit	
Low	912	-8.830	1.00	
High	917	-9.648	1.00	

Peak Power Spectral Density					
Carrier	Frequency	Measured Spectral Density			
Channel	(MHz)	dBm	Limit		
Low	912	-13.15	1.00		
High	917	-12.62	1.00		

Table 56. Peak Power Spectral Density 802.11n (20MHz) Mode Test Results - Chain 1

Peak Power Spectral Density					
Carrier	Frequency	Measured Spectral Density			
Channel	(MHz)	dBm	Limit		
Low	907	0.876	1.00		
Mid	912	0.996	1.00		
Mid	917	0.548	1.00		
High	922	-0.203	1.00		

Table 57. Peak Power Spectral Density 802.11n (5MHz) Mode Test Results – Combined

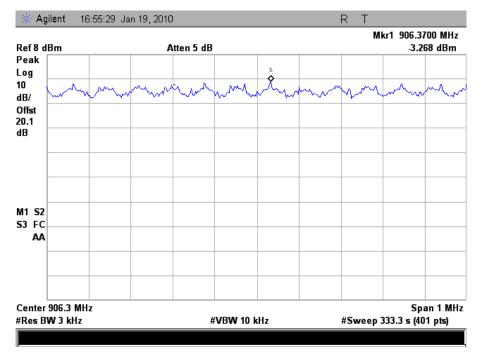

Peak Power Spectral Density					
Carrier	Frequency	Measured Spectral Density			
Channel	(MHz)	dBm	Limit		
Low	912	-1.081	1.00		
High	917	0.101	1.00		

 Table 58. Peak Power Spectral Density 802.11n
 (10MHz) Mode Test Results – Combined

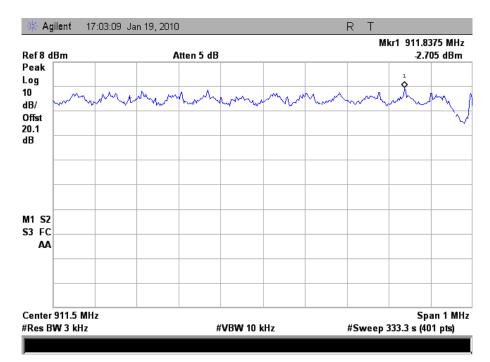
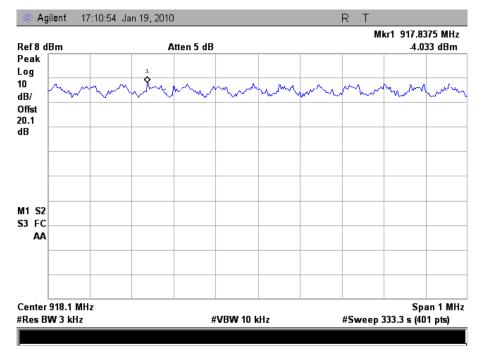
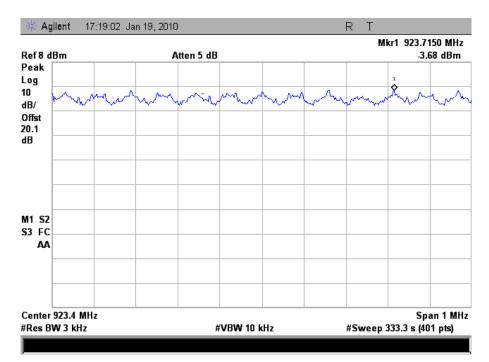

Peak Power Spectral Density					
Carrier	Carrier Frequency Measured		d Spectral Density		
Channel	(MHz)	dBm	Limit		
Low	912	-4.390	1.00		
High	917	-3.195	1.00		

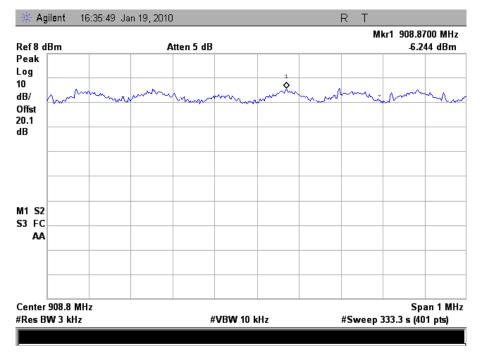
 Table 59. Peak Power Spectral Density 802.11n (20MHz) Mode Test Results – Combined



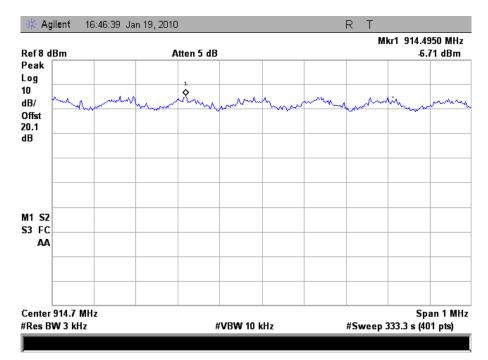
Plot 142. Power Spectral Density, 907MHz Low Channel, 802.11g, 5MHz Bandwidth, Chain 0



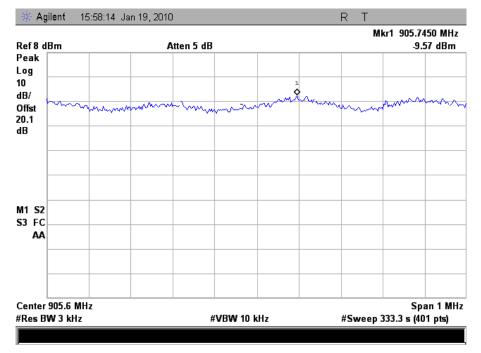
Plot 143. Power Spectral Density, 912MHz Mid Channel 1, 802.11g, 5MHz Bandwidth, Chain 0



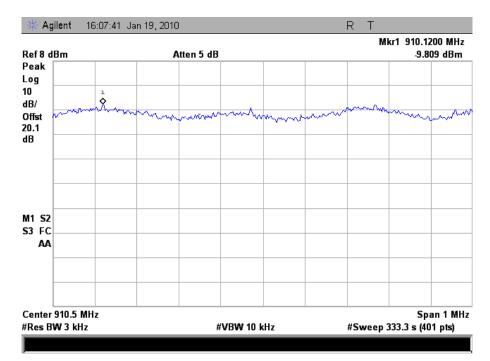
Plot 144. Power Spectral Density, 917MHz Mid Channel 2, 802.11g, 5MHz Bandwidth, Chain 0



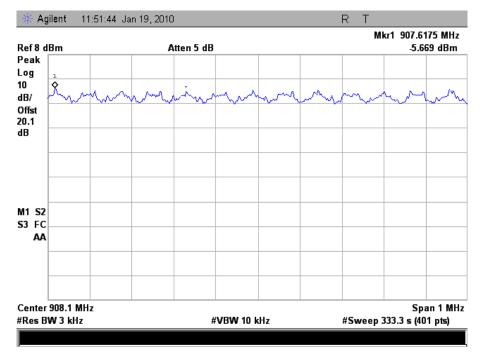
Plot 145. Power Spectral Density, 922MHz High Channel, 802.11g, 5MHz Bandwidth, Chain 0



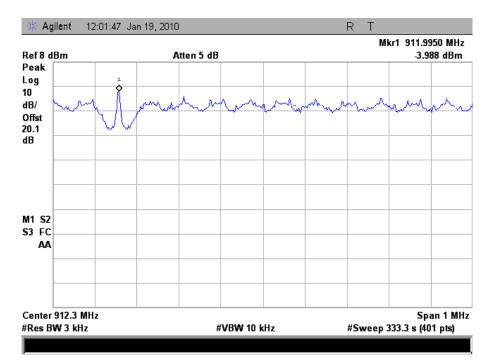
Plot 146. Power Spectral Density, 912MHz Low Channel, 802.11g, 10MHz Bandwidth, Chain 0



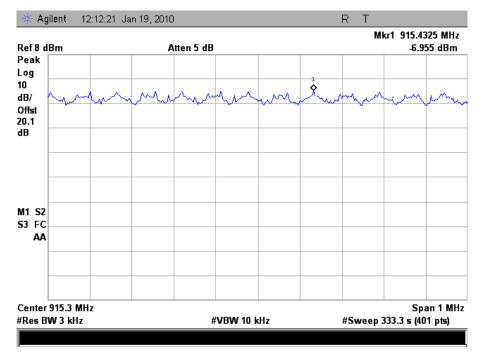
Plot 147. Power Spectral Density, 917MHz High Channel, 802.11g, 10MHz Bandwidth, Chain 0



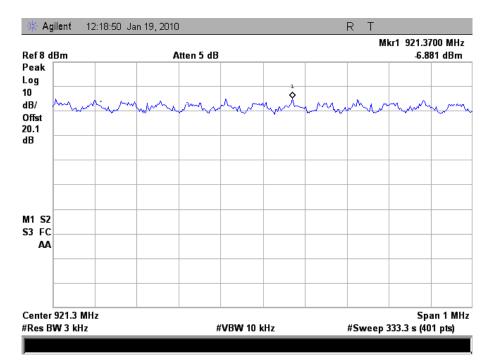
Plot 148. Power Spectral Density, 912MHz Low Channel, 802.11g, 20MHz Bandwidth, Chain 0



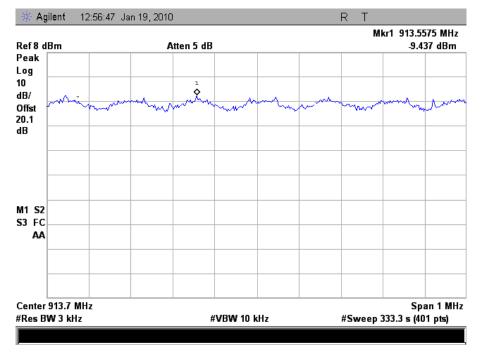
Plot 149. Power Spectral Density, 917MHz Mid Channel, 802.11g, 20MHz Bandwidth, Chain 0



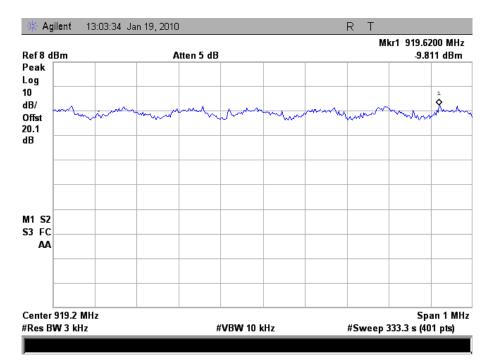
Plot 150. Power Spectral Density, 907MHz Low Channel, 802.11n, 5MHz Bandwidth, Chain 0



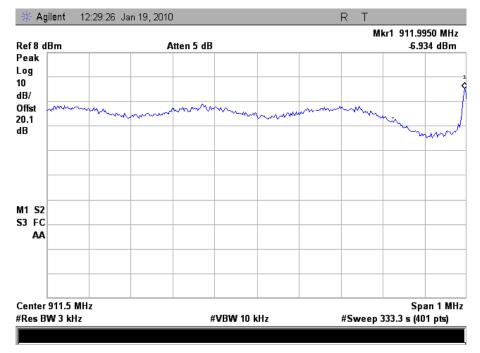
Plot 151. Power Spectral Density, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth, Chain 0



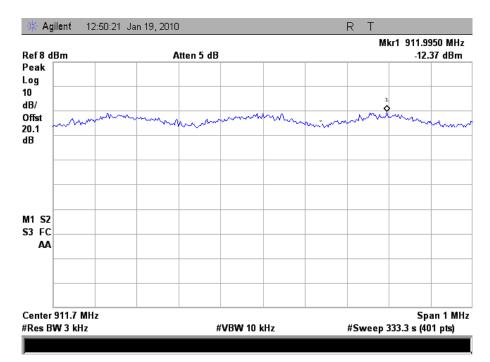
Plot 152. Power Spectral Density, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth, Chain 0



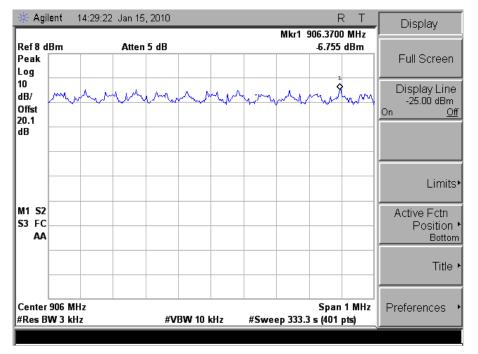
Plot 153. Power Spectral Density, 922MHz High Channel, 802.11n, 5MHz Bandwidth, Chain 0



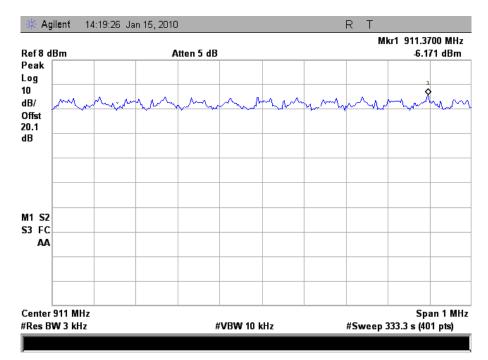
Plot 154. Power Spectral Density, 912MHz Low Channel, 802.11n, 10MHz Bandwidth, Chain 0



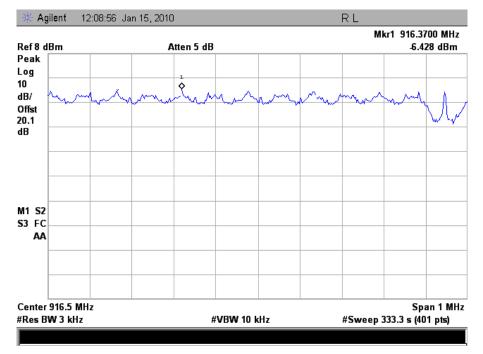
Plot 155. Power Spectral Density, 917MHz High Channel, 802.11n, 10MHz Bandwidth, Chain 0



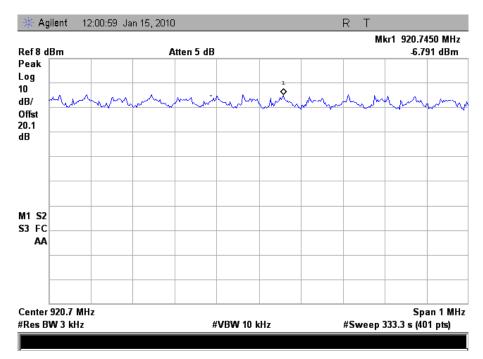
Plot 156. Power Spectral Density, 912MHz Low Channel, 802.11n, 20MHz Bandwidth, Chain 0



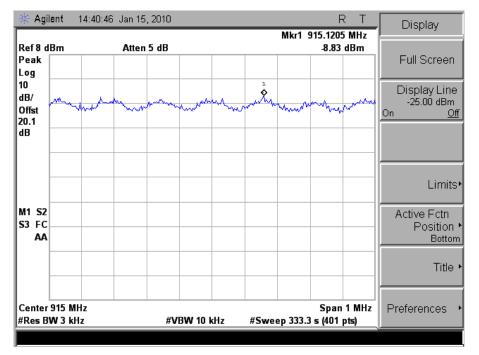
Plot 157. Power Spectral Density, 917MHz High Channel, 802.11n, 20MHz Bandwidth, Chain 0



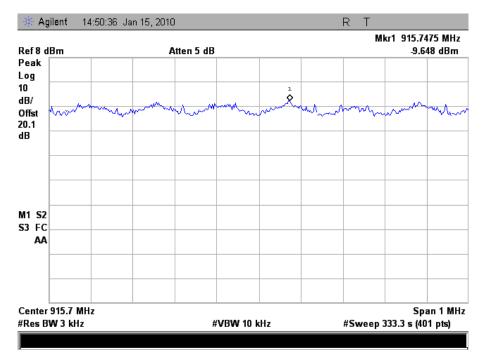
Plot 158. Power Spectral Density, 907MHz Low Channel, 802.11n, 5MHz Bandwidth, Chain 1



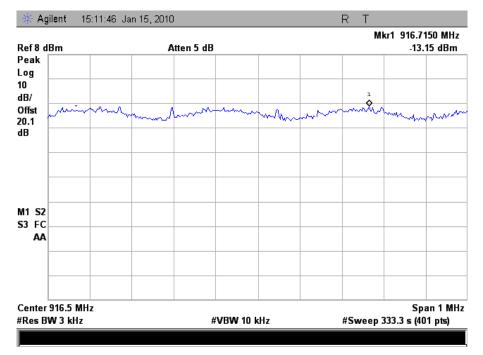
Plot 159. Power Spectral Density, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth, Chain 1



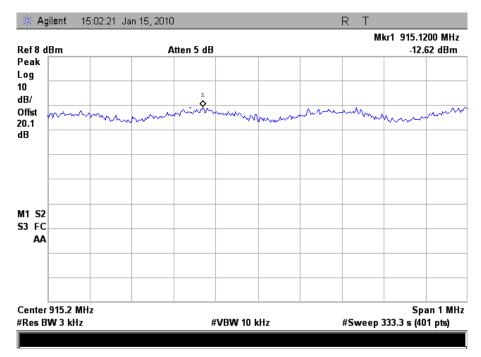
Plot 160. Power Spectral Density, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth, Chain 1



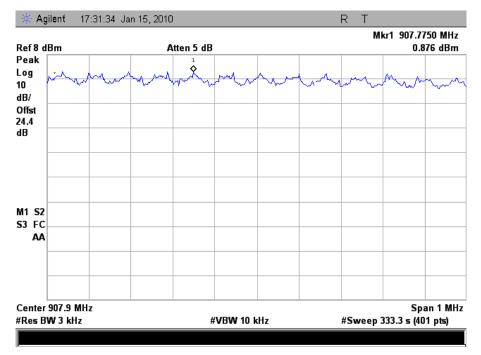
Plot 161. Power Spectral Density, 922MHz High Channel, 802.11n, 5MHz Bandwidth, Chain 1



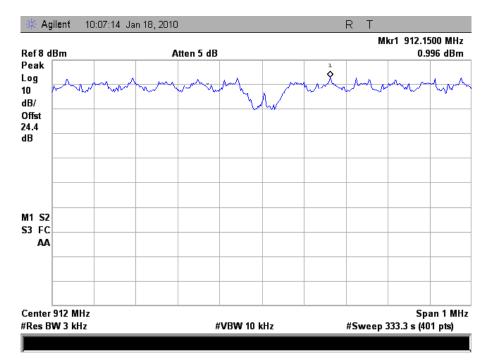
Plot 162. Power Spectral Density, 912MHz Low Channel, 802.11n, 10MHz Bandwidth, Chain 1



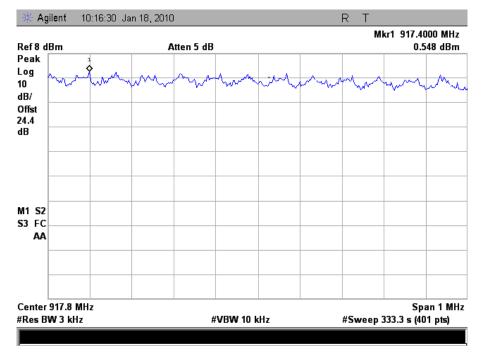
Plot 163. Power Spectral Density, 917MHz High Channel, 802.11n, 10MHz Bandwidth, Chain 1



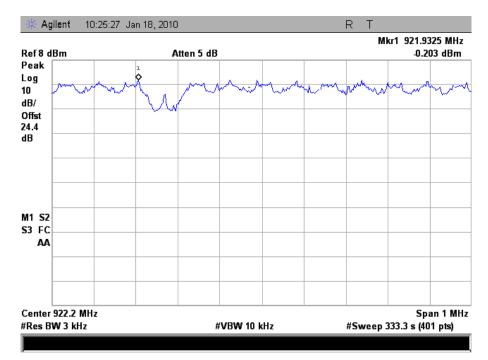
Plot 164. Power Spectral Density, 912MHz Low Channel, 802.11n, 20MHz Bandwidth, Chain 1



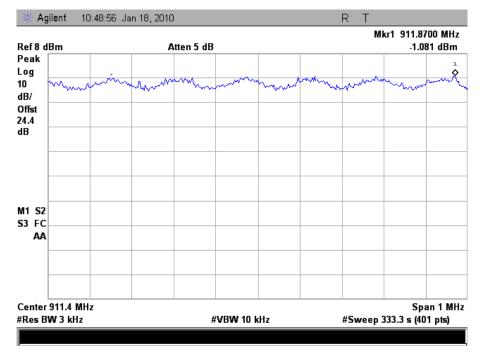
Plot 165. Power Spectral Density, 917MHz High Channel, 802.11n, 20MHz Bandwidth, Chain 1



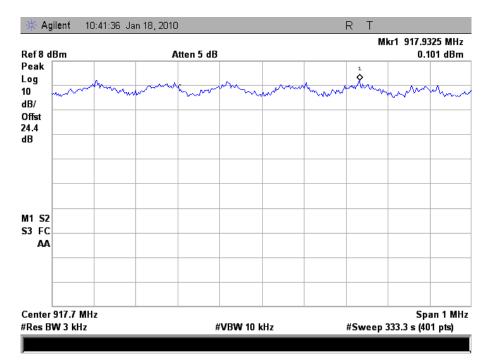
Plot 166. Power Spectral Density, 907MHz Low Channel, 802.11n, 5MHz Bandwidth, Combined Chains



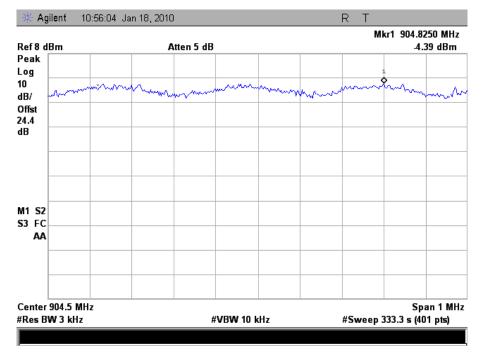
Plot 167. Power Spectral Density, 912MHz Mid Channel 1, 802.11n, 5MHz Bandwidth, Combined Chains



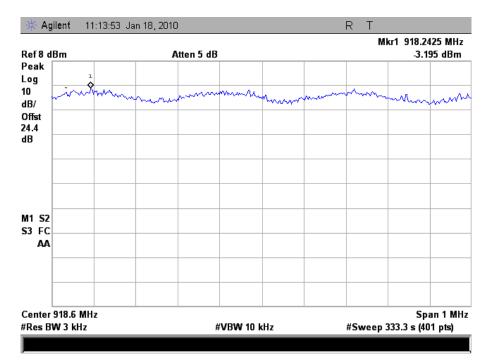
Plot 168. Power Spectral Density, 917MHz Mid Channel 2, 802.11n, 5MHz Bandwidth, Combined Chains



Plot 169.. Power Spectral Density, 922MHz High Channel, 802.11n, 5MHz Bandwidth, Combined Chains



Plot 170. Power Spectral Density, 912MHz Low Channel, 802.11n, 10MHz Bandwidth, Combined Chains



Plot 171. Power Spectral Density, 917MHz High Channel, 802.11n, 10MHz Bandwidth, Combined Chains

Plot 172. Power Spectral Density, 912MHz Low Channel, 802.11n, 20MHz Bandwidth, Combined Chains

Plot 173. Power Spectral Density, 917MHz High Channel, 802.11n, 20MHz Bandwidth, Combined Chains

IV. Test Equipment

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ANSI/NCSL Z540-1-1994 and ANSI/ISO/IEC 17025:2000.

MET Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date
1S2421	EMI RECEIVER	ROHDE&SCHWARZ	ESIB 7	05/27/2009	05/27/2010
1S2121	PRE-AMPLIFIER	HEWLETT PACKARD	8449B	SEE NOTE	
1S2501	EMI RECEIVER	Rohde & Schwarz	ESU40	4/27/2009	4/27/2010
1S2198	HORN ANTENNA	EMCO	3115	09/03/2009	09/03/2010
1S2202	HORN ANTENNA	EMCO	3116	4/10/2007	4/10/2010
N/A	HIGH PASS FILTER	MICRO-TRONICS	HPM13146	SEE NOTE	
1S2041	COUPLER, BI DIRECTIONALCOAXIAL	NARDA	N/A	SEE NOTE	
1S2483	ANALYZER, SPECTRUM	AGILENT	E4447A	1/12/2009	1/12/2010
1S2460	ANALYZER, SPECTRUM 9 KHZ-40GHZ	AGILENT	E4407B	04/14/2009	04/14/2010
18508	LISN	SOLAR ELECTRONICS	9252-50- R24-BNC	06/05/2009	06/05/2010
182512	TRANSIENT LIMITER	AGILENT	11947A	SEE NOTE	
1S2518	THERMO-HYGROMETER	FISHER SCIENTIFIC	11-661-7D	1/21/2008	1/21/2010
1S2482	CHAMBER, 5 METER	PANASHIELD	641431	10/16/2009	10/16/2010
1S2108	RECIEVER, EMI, RF FILTER SECTION	HP	85460A	11/10/2009	11/10/2010
1S2399	TURNTABLE CONTROLLER	SUNOL SCIENCE	SC99V	SEE NOTE	
1S2485	BILOG ANTENNA	TESEQ	CBL6112D	03/20/2009	03/20/2010

Table 60. Test Equipment List

Note: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.

A. Certification Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart I — Marketing of Radio frequency devices:

§ 2.801 Radio-frequency device defined.

As used in this part, a radio-frequency device is any device which in its operation is capable of Emitting radio-frequency energy by radiation, conduction, or other means. Radio- frequency devices include, but are not limited to:

- (a) The various types of radio communication transmitting devices described throughout this chapter.
- (b) The incidental, unintentional and intentional radiators defined in Part 15 of this chapter.
- (c) The industrial, scientific, and medical equipment described in Part 18 of this chapter.
- (d) Any part or component thereof which in use emits radio-frequency energy by radiation, conduction, or other means.

§ 2.803 Marketing of radio frequency devices prior to equipment authorization.

- (a) Except as provided elsewhere in this chapter, no person shall sell or lease, or offer for sale or lease (including advertising for sale or lease), or import, ship or distribute for the purpose of selling or leasing or offering for sale or lease, any radio frequency device unless:
 - (1) In the case of a device subject to certification, such device has been authorized by the Commission in accordance with the rules in this chapter and is properly identified and labeled as required by §2.925 and other relevant sections in this chapter; or
 - (2) In the case of a device that is not required to have a grant of equipment authorization issued by the Commission, but which must comply with the specified technical standards prior to use, such device also complies with all applicable administrative (including verification of the equipment or authorization under a Declaration of Conformity, where required), technical, labeling and identification requirements specified in this chapter.
- (d) Notwithstanding the provisions of paragraph (a) of this section, the offer for sale solely to business, commercial, industrial, scientific or medical users (but not an offer for sale to other parties or to end users located in a residential environment) of a radio frequency device that is in the conceptual, developmental, design or preproduction stage is permitted prior to equipment authorization or, for devices not subject to the equipment authorization requirements, prior to a determination of compliance with the applicable technical requirements *provided* that the prospective buyer is advised in writing at the time of the offer for sale that the equipment is subject to the FCC rules and that the equipment will comply with the appropriate rules before delivery to the buyer or to centers of distribution.

- (e)(1) Notwithstanding the provisions of paragraph (a) of this section, prior to equipment authorization or determination of compliance with the applicable technical requirements any radio frequency device may be operated, but not marketed, for the following purposes and under the following conditions:
 - (i) Compliance testing;
 - (ii) Demonstrations at a trade show provided the notice contained in paragraph (c) of this section is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iii) Demonstrations at an exhibition conducted at a business, commercial, industrial, scientific or medical location, but excluding locations in a residential environment, provided the notice contained in paragraphs (c) or (d) of this section, as appropriate, is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iv) Evaluation of product performance and determination of customer acceptability, provided such operation takes place at the manufacturer's facilities during developmental, design or pre-production states; or
 - (v) Evaluation of product performance and determination of customer acceptability where customer acceptability of a radio frequency device cannot be determined at the manufacturer's facilities because of size or unique capability of the device, provided the device is operated at a business, commercial, industrial, scientific or medical user's site, but not at a residential site, during the development, design or pre-production stages.
- (e)(2) For the purpose of paragraphs (e)(1)(iv) and (e)(1)(v) of this section, the term *manufacturer's facilities* includes the facilities of the party responsible for compliance with the regulations and the manufacturer's premises, as well as the facilities of other entities working under the authorization of the responsible party in connection with the development and manufacture, but not the marketing, of the equipment.
- (f) For radio frequency devices subject to verification and sold solely to business, commercial, industrial, scientific and medical users (excluding products sold to other parties or for operation in a residential environment), parties responsible for verification of the devices shall have the option of ensuring compliance with the applicable technical specifications of this chapter at each end user's location after installation, provided that the purchase or lease agreement includes a proviso that such a determination of compliance be made and is the responsibility of the party responsible for verification of the equipment.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart J — Equipment Authorization Procedures:

§ 2.901 Basis and Purpose

- (a) In order to carry out its responsibilities under the Communications Act and the various treaties and international regulations, and in order to promote efficient use of the radio spectrum, the Commission has developed technical standards for radio frequency equipment and parts or components thereof. The technical standards applicable to individual types of equipment are found in that part of the rules governing the service wherein the equipment is to be operated.¹ In addition to the technical standards provided, the rules governing the service may require that such equipment be verified by the manufacturer or importer, be authorized under a Declaration of Conformity, or receive an equipment authorization from the Commission by one of the following procedures: certification or registration.
- (b) The following sections describe the verification procedure, the procedure for a Declaration of Conformity, and the procedures to be followed in obtaining certification from the Commission and the conditions attendant to such a grant.

§ 2.907 Certification.

- (a) Certification is an equipment authorization issued by the Commission, based on representation and test data submitted by the applicant.
- (b) Certification attaches to all units subsequently marketed by the grantee which are identical (see Section 2.908) to the sample tested except for permissive changes or other variations authorized by the Commission pursuant to Section 2.1043.

¹ In this case, the equipment is subject to the rules of Part 15. More specifically, the equipment falls under Subpart B (of Part 15), which deals with unintentional radiators.

§ 2.948 Description of measurement facilities.

(a) Each party making measurements of equipment that is subject to an equipment authorization under Part 15 or Part 18 of this chapter, regardless of whether the measurements are filed with the Commission or kept on file by the party responsible for compliance of equipment marketed within the U.S. or its possessions, shall compile a description of the measurement facilities employed.

(1) If the measured equipment is subject to the verification procedure, the description of the measurement facilities shall be retained by the party responsible for verification of the equipment.

- (i) If the equipment is verified through measurements performed by an independent laboratory, it is acceptable for the party responsible for verification of the equipment to rely upon the description of the measurement facilities retained by or placed on file with the Commission by that laboratory. In this situation, the party responsible for the verification of the equipment is not required to retain a duplicate copy of the description of the measurement facilities.
- (ii) If the equipment is verified based on measurements performed at the installation site of the equipment, no specific site calibration data is required. It is acceptable to retain the description of the measurement facilities at the site at which the measurements were performed.
- (2) If the equipment is to be authorized by the Commission under the certification procedure, the description of the measurement facilities shall be filed with the Commission's Laboratory in Columbia, Maryland. The data describing the measurement facilities need only be filed once but must be updated as changes are made to the measurement facilities or as otherwise described in this section. At least every three years, the organization responsible for filing the data with the Commission shall certify that the data on file is current.

Label and User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart A — General:

§ 15.19 Labeling requirements.

- (a) In addition to the requirements in Part 2 of this chapter, a device subject to certification or verification shall be labeled as follows:
 - (1) Receivers associated with the operation of a licensed radio service, e.g., FM broadcast under Part 73 of this chapter, land mobile operation under Part 90, etc., shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference.

(2) A stand-alone cable input selector switch, shall bear the following statement in a conspicuous location on the device:

This device is verified to comply with Part 15 of the FCC Rules for use with cable television service.

(3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

- (4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified under paragraph (a) of this section is required to be affixed only to the main control unit.
- (5) When the device is so small or for such use that it is not practicable to place the statement specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

§ 15.21 Information to user.

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart B — Unintentional Radiators:

§ 15.105 Information to the user.

(a) For a Class A digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at own expense.

(b) For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

ICES-003 Procedural & Labeling Requirements

From the Industry Canada Electromagnetic Compatibility Advisory Bulletin entitled, "Implementation and Interpretation of the Interference-Causing Equipment Standard for Digital Apparatus, ICES-003" (EMCAB-3, Issue 2, July 1995):

"At present, CISPR 22: 2002 and ICES technical requirements are essentially equivalent. Therefore, if you have CISPR 22: 2002 approval by meeting CISPR Publication 22, the only additional requirements are: to attach a note to the report of the test results for compliance, indicating that these results are deemed satisfactory evidence of compliance with ICES-003 of the Canadian Interference-Causing Equipment Regulations; to maintain these records on file for the requisite five year period; and to provide the device with a notice of compliance in accordance with ICES-003."

Procedural Requirements:

According to Industry Canada's Interference Causing Equipment Standard for Digital Apparatus ICES-003 Issue 4, February 2004:

- Section 6.1: A record of the measurements and results, showing the date that the measurements were completed, shall be retained by the manufacturer or importer for a period of at least five years from the date shown in the record and made available for examination on the request of the Minister.
- Section 6.2: A written notice indicating compliance must accompany each unit of digital apparatus to the end user. The notice shall be in the form of a label that is affixed to the apparatus. Where because of insufficient space or other constraints it is not feasible to affix a label to the apparatus, the notice may be in the form of a statement in the user's manual.

Labeling Requirements:

The suggested text for the notice, in English and in French, is provided below, from the Annex of ICES-003:

This Class [²] digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe [¹] est conforme à la norme NMB-003 du Canada.

² Insert either A or B but not both as appropriate for the equipment requirements.

End of Report