

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313 33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372 3162 BELICK STREET • SANTA CLARA, CALIFORNIA 95054 • PHONE (408 748-3585 • FAX (510) 489-6372

June 2, 2011

Ubiquiti Networks, Inc. 91 E. Tasman San Jose, CA 95134

Dear Jennifer Sanchez,

Enclosed is the EMC test report for compliance testing of the Ubiquiti Networks, Inc., NanoStationM2, tested to the requirements of ETSI EN 301 489-1 with ETSI EN 301 489-17 (Article 3.1(b) of R&TTE Directive).

Thank you for using the services of MET Laboratories, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours,

MET LABORATORIES, INC.

Jennifer Warnell

Documentation Department

Reference: (\ Ubiquiti Networks, Inc. \ EMC30567-ETS489)

Certificates and reports shall not be reproduced except in full, without the written permission of MET Laboratories, Inc. This letter of transmittal is not part of the attached report.

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313 33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372 3162 BELICK STREET • SANTA CLARA, CALIFORNIA 95054 • PHONE (408 748-3585 • FAX (510) 489-6372

Electromagnetic Compatibility Test Report

For the

Ubiquiti Networks, Inc. NanoStationM2

Tested for Compliance with

ETSI EN 301 489-1 With ETSI EN 301 489-17 (Article 3.1(b) of R&TTE Directive)

MET Report: EMC30567-ETS489

June 2, 2011

Prepared For:

Ubiquiti Networks, Inc. 91 E. Tasman San Jose, CA 95134

> Prepared By: MET Laboratories, Inc. 3162 Belick Street Santa Clara, CA 95054

Electromagnetic Compatibility Test Report

For the

Ubiquiti Networks, Inc. NanoStationM2

Tested for Compliance with

ETSI EN 301 489-1 With ETSI EN 301 489-17 (Article 3.1(b) of R&TTE Directive)

MET Report: EMC30567-ETS489

Lionel Gabrillo

Jennifer Warnell **Documentation Department** Electromagnetic Compatibility Lab

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of ETSI EN 301 489-1 with ETSI EN 301 489-17 under normal use and maintenance.

Shawn McMillen,

Wireless Manager, Electromagnetic Compatibility Lab

Report Status Sheet

Revision	Report Date	Reason for Revision		
Ø	June 2, 2011	Initial Issue.		

Table of Contents

1.0	Intro	duction	
	1.1	Overview	
	1.2	Test Site	1
	1.3	General Performance Criteria	
	1.4	Testing Summary	2
	1.5	Modifications to the Test Standard	3
	1.6	References	3
2.0	Equip	pment Under Test	4
	2.1	Description of Test Sample	4
	2.2	Equipment Configuration	6
	2.3	Support Equipment	6
	2.4	Ports and Cabling Information.	6
	2.5	Mode of Operation	7
	2.6	Method of Monitoring EUT Operation	
	2.7	Modifications to the EUT	7
	2.8	Disposition of EUT	7
3.0	Elect	romagnetic Compatibility Emission Criteria	8
	3.1	AC Mains Power Input/Output Ports: Limits for Conducted Emissions	8
	3.2	Harmonic Current Emissions	
	3.3	Voltage Fluctuations (Flicker)	18
	3.4	Telecommunications Ports	21
4.0	Elect	romagnetic Compatibility Immunity Criteria	25
	4.1	Radio Frequency Electromagnetic Field	25
	4.2	Electrostatic Discharge	
	4.3	Fast Transient, Common Mode	36
	4.4	Radio Frequency, Common Mode	40
	4.5	Voltage Dips and Short Interruptions	43
	4.6	Surges	46
5.0	Test	Equipment	50

List of Tables

Table 1. Summary of Compliance Testing	2
Table 2. Test References	
Table 3. Equipment Configuration	6
Table 4. Support Equipment	6
Table 5. Ports and Cabling Information	6
Table 6. Limits of Conducted Disturbance at AC Mains Power Input/Output Ports	
Table 7. Conducted Emissions, AC Power, Phase Line, CETUS Power Supply	
Table 8. Conducted Emissions, AC Power, Neutral Line, CETUS Power Supply	
Table 9. Conducted Emissions, AC Power, Phase Line, GME Power Supply	
Table 10. Conducted Emissions, AC Power, Neutral Line, GME Power Supply	
Table 11. Harmonic Current Emission Limits from Section 7 of EN 61000-3-2	14
Table 12. Harmonics, Test Results, CETUS Power Supply	
Table 13. Harmonics, Test Results, GME Power Supply	16
Table 14. Flicker, Test Results, CETUS Power Supply	19
Table 15. Flicker, Test Results, GME Power Supply	19
Table 16. Limits of Conducted Common Mode (Asymmetric Mode) Disturbance at Telecommunication	
Clause 5.2 of EN 55022 Class B	21
Table 17. Conducted Disturbance at Telecommunication Ports Test Results, LAN, CETUS Power Supp	ly 22
Table 18. Conducted Disturbance at Telecommunication Ports Test Results, LAN, GME Power Supply.	23
Table 19. Radiated Immunity, Test Results, CETUS Power Supply	26
Table 20. Radiated Immunity, Test Results, GME Power Supply	26
Table 21. Electrostatic Discharge, Test Results, CETUS Power Supply	29
Table 22. Electrostatic Discharge, Test Results, GME Power Supply	29
Table 23. Fast Transient, Test Results, CETUS Power Supply	
Table 24. Fast Transient, Test Results, GME Power Supply	38
Table 25. Conducted Immunity, Test Results, CETUS Power Supply	41
Table 26. Conducted Immunity, Test Results, GME Power Supply	41
Table 27. Voltage Dips and Short Interruptions Limits	
Table 28. Voltage Dips and Interruptions, Test Results, CETUS Power Supply	
Table 29. Voltage Dips and Interruptions, Test Results, GME Power Supply	
Table 30. Combination Wave Generator Test Parameters for EN 61000-4-5	
Table 31. Surges, Test Results, CETUS Power Supply	
Table 32. Surges, Test Results, GME Power Supply	48
List of Figures	
Figure 1. Block Diagram of Test Configuration	5
Figure 2. Test Circuit for EN 61000-3-3	18
Figure 3. EN 61000-4-4 Test Waveform.	
Figure 4. EN 61000-4-5 Surge Test Waveforms	47

List of Photographs

Photograph 1. J	Ubiquiti Networks NanoStationM2	4
Photograph 2. A	AC Mains Power Conducted Disturbance, Test Setup	13
	Harmonic Current Emissions, Test Setup	
Photograph 4. '	Voltage Fluctuations (Flicker), Test Setup	20
Photograph 5. I	Limits for Conducted Disturbance at Telecommunication Ports	24
Photograph 6. I	Radiated Immunity, Test Setup, 80 MHz – 1 GHz	27
Photograph 7. I	Radiated Immunity, Test Setup, 1.4 GHz – 2.7 GHz	27
Photograph 8. I	ESD, Test Points, Top View 1, CETUS Power Supply	30
	ESD, Test Points, Top View 2, CETUS Power Supply	
Photograph 10.	ESD, Test Points, Rear View, CETUS Power Supply	31
Photograph 11.	ESD, Test Points, CETUS Power Supply	31
Photograph 12.	ESD, Test Points, Top View, GME Power Supply	32
Photograph 13.	ESD, Test Points, Bottom View, GME Power Supply	32
Photograph 14.	ESD, Test Points, Front View, GME Power Supply	33
Photograph 15.	ESD, Test Points, Left Side View, GME Power Supply	33
Photograph 16.	ESD, Test Points, Rear Side View, GME Power Supply	34
Photograph 17.	Electrostatic Discharge, Test Setup, CETUS Power Supply	35
Photograph 18.	Electrostatic Discharge, Test Setup, GME Power Supply	35
Photograph 19.	Fast Transient, Common Mode, Test Setup, AC Mode	39
Photograph 20.	Fast Transient, Common Mode, Test Setup, I/O Cables	39
Photograph 21.	Radio Frequency, Common Mode, Test Setup, AC Mode	42
Photograph 22.	Radio Frequency, Common Mode, Test Setup, I/O Mode	42
Photograph 23.	Voltage Dips and Interruptions, Test Setup	45
	Surges, Test Setup, AC Mode	
Photograph 25	Surges Test Setup I/O Mode	49

List of Terms and Abbreviations

AC	Alternating Current	
ACF	Antenna Correction Factor	
Cal	Calibration	
	Measurement Distance	
d JD	Decibels	
dB		
dBμA	Decibels above one microamp	
dBμV	Decibels above one microvolt	
dBμA/m	Decibels above one microamp per meter	
dBμV/m	Decibels above one microvolt per meter	
DC	Direct Current	
E	Electric Field	
DSL	Digital Subscriber Line	
ESD	Electrostatic Discharge	
EUT	Equipment Under Test	
f	Frequency	
CISPR	Comite International Special des Perturbations Radioelectriques (International Special Committee on Radio Interference)	
GRP	Ground Reference Plane	
Н	Magnetic Field	
НСР	Horizontal Coupling Plane	
Hz	Hertz	
IEC	International Electrotechnical Commission	
kHz	kiloHertz	
kPa	kiloPascal	
kV	kilovolt	
LISN	Line Impedance Stabilization Network	
MHz	MegaHertz	
μН	microHenry	
μF	microFarad	
μs	microseconds	
PRF	Pulse Repetition Frequency	
RF	Radio Frequency	
RMS	Root-Mean-Square	
V/m	Volts per meter	
VCP	Vertical Coupling Plane	

1.0 Introduction

1.1 Overview

MET Laboratories, Inc. was contracted by Ubiquiti Networks, Inc. to perform testing on the NanoStationM2, under Ubiquiti Networks, Inc. purchase order number US100132.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the NanoStationM2.

The results obtained relate only to the item(s) tested.

Model(s) Tested:	NanoStationM2
Model(s) Covered:	NanoStationM2
	Primary Power: 100-240 VAC
EUT Specifications:	Secondary Power: N/A
EO1 Specifications.	Equipment Emissions Class: The radio equipment and/or associated ancillary equipment under test are classified as equipment for fixed use
	Temperature: 15-35° C
Lab Ambient Test Conditions:	Relative Humidity: 30-60%
	Atmospheric Pressure: 860-1060 mbar
Evaluated by:	Lionel Gabrillo
Report Date(s):	June 2, 2011

1.2 Test Site

All testing was performed at MET Laboratories, Inc., 3162 Belick Street, Santa Clara, CA 95054. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

1.3 General Performance Criteria

The performance criteria cited in EN 301 489-17:

- performance criteria A for immunity tests with phenomena of a continuous nature;
- performance criteria B for immunity tests with phenomena of a transient nature;
- performance criteria C for immunity tests with power interruptions exceeding a certain time.

Note: For specific details on performance criteria, see subclause 6.2 of EN 301 489-17.

1.4 Testing Summary

Emissions

Descriptive Name	Requirement	Test Method	Result
Enclosure of Ancillary Equipment Measured on a Stand Alone Basis	ETSI EN 301 489-1, Section 8.2	EN 55016-2-3 (2006)	Not Applicable - EUT is not an Ancillary Equipment.
DC Power Input/Output Ports	ETSI EN 301 489-1, Section 8.3	EN 55022 (2006)	Not Applicable - EUT is AC powered.
AC Mains Power Input/Output Ports	ETSI EN 301 489-1, Section 8.4	EN 55022 (2006)	Compliant
Harmonic Current Emissions (AC Mains Input Port)	ETSI EN 301 489-1, Section 8.5	EN 61000-3-2 +A1 (2006)	Compliant
Voltage Fluctuations and Flicker (AC Mains Input Port)	ETSI EN 301 489-1, Section 8.6	EN 61000-3-3 (1995)	Compliant
Telecommunication Ports	ETSI EN 301 489-1, Section 8.7	EN 55022 (2006)	Compliant

Immunity

Inimumity					
Descriptive Name	Requirement	Test Method	Result		
Radio Frequency Electromagnetic Field (80 MHz – 1000 MHz and 1400 MHz to 2700 MHz)	ETSI EN 301 489-1, Section 9.2	EN 61000-4-3 (2006)	Compliant		
Electrostatic Discharge (ESD)	ETSI EN 301 489-1, Section 9.3	EN 61000-4-2 (2001)	Compliant		
Fast Transient, Common Mode	ETSI EN 301 489-1, Section 9.4	EN 61000-4-4 (2004)	Compliant		
Radio Frequency, Common Mode	ETSI EN 301 489-1, Section 9.5	EN 61000-4-6 (2005)	Compliant		
Transient & Surges in the Vehicular Environment	ETSI EN 301 489-1, Section 9.6	ISO 7637-2 (2004) (12/24 VDC)	Not Applicable - EUT is for fixed installation not vehicular equipment.		
Voltage Dips and Interruptions	ETSI EN 301 489-1, Section 9.7	EN 61000-4-11 (2004)	Compliant		
Surges	ETSI EN 301 489-1, Section 9.8	EN 61000-4-5 (2006)	Compliant		

Table 1. Summary of Compliance Testing

1.5 Modifications to the Test Standard

No modifications were made to the test standard.

1.6 References

ETSI EN 301 489-1 V1.8.1	Electromagnetic compatibility and Radio spectrum Matters (ERM);		
(2008-04)	Electromagnetic Compatibility (EMC) standard for radio equipment and services;		
(2000 01)	Part 1: Common technical requirements		
ETSI EN301 489-17	Electromagnetic compatibility and Radio spectrum Matters (ERM);		
V2.1.1(2009-05)	Electromagnetic Compatibility (EMC) standard for radio equipment and services;		
V 2.1.1(2007-03)	Part 17: Specific conditions for Wideband data and HIPERLAN equipment		
EN 55022	Information Technology Equipment – Radio Disturbance Characteristics – Limits		
EN 55022	and Methods of Measurement, 2006		
	Electromagnetic Compatibility (EMC) Part 3-3: Limits – Limitation of Voltage		
EN 61000 2 2	Changes, Voltage Fluctuations and Flicker in Public Low-Voltage Supply		
EN 61000-3-3	Systems, for Equipment with Rated Current ≤ 16 A per Phase and Not Subject to		
	Conditional Connection, 1995		
EN 61000 4.2	Electromagnetic Compatibility (EMC) Part 4-2: Testing and Measurement		
EN 61000-4-2	Techniques – Electrostatic Discharge Immunity Test, 2001		
	Electromagnetic compatibility (EMC) Part 4-3: Testing and Measurement		
EN 61000-4-3	Techniques – Radiated, Radio-Frequency, Electromagnetic Field Immunity Test,		
	2006		
	Specification for Radio Disturbance and Immunity Measuring Apparatus and		
EN 55016-2-3	Methods – Part 2-3: Methods of Measurement of Disturbances and Immunity –		
	Radiated Disturbance Measurements, 2006		
EN 61000-4-4	Electromagnetic Compatibility (EMC) Part 4-4: Testing and Measurement		
EN 01000-4-4	Techniques – Electrical Fast Transient/Burst Immunity Test, 2004		
EN 61000 4.5	Electromagnetic Compatibility (EMC) Part 4-5: Testing and Measurement		
EN 61000-4-5	Techniques – Surge Immunity Test, 2006		
	Electromagnetic Compatibility - Part 4-6: Testing and Measurement Techniques		
EN 61000-4-6	Section – Immunity to Conducted Disturbances, Induced by Radio-Frequency		
	Fields, 2005		
EN (1000 4 11	Electromagnetic Compatibility - Part 4-11: Testing and Measurement Techniques		
EN 61000-4-11	– Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests, 2004		
150 505 3	Road Vehicles – Electrical Disturbances from Conduction and Coupling – Part 2:		
ISO 7637-2	Electrical Transient Conduction Along Supply Lines Only, 2004		
	Electromagnetic Compatibility (EMC) – Part 3-2: Limits – Limits for Harmonic		
EN 61000-3-2/Amendment 1	Current Emissions (Equipment Input Current Up to and Including 16 A per Phase,		
	2006		

Table 2. Test References

2.0 Equipment Under Test

2.1 Description of Test Sample

The NanoStationM2, Equipment Under Test (EUT) for the remainder of this document, is a 2.4GHz Hi Power 2x2 MIMO AirMax Station.

Photograph 1. Ubiquiti Networks NanoStationM2

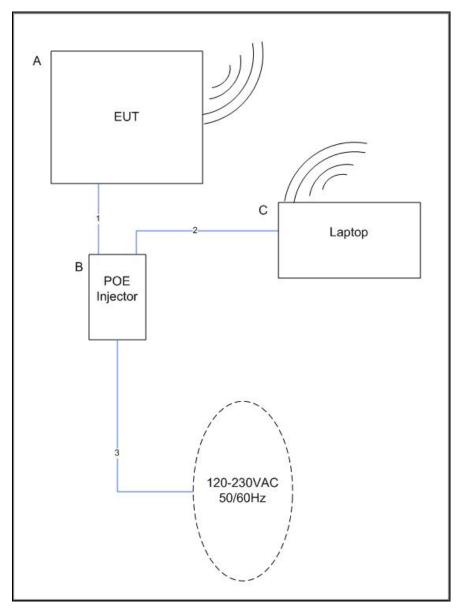


Figure 1. Block Diagram of Test Configuration

2.2 Equipment Configuration

The EUT was set up as outlined in Figure 1. All equipment incorporated as part of the EUT is included in the following list.

Ref. ID	Name / Description	Model Number	Serial Number
A	NanoStationM2	NS5	N/A
A	NanoStationM2	NS5	N/A
A NanoStationM2		NS5	1O5OL 00156D9ED5C9
В	Power Supply	CPWA240500US	POEZC101126181008
В	Power Supply	UBI-POE-24-5	0912-0007163

Table 3. Equipment Configuration

2.3 Support Equipment

Support equipment necessary for the operation and testing of the EUT is included in the following list.

Ref. ID Name / Description		Manufacturer Model Number		Serial Number	
C	Laptop	Dell	Vostro 1510	4953929473	

Table 4. Support Equipment

2.4 Ports and Cabling Information

Ref. ID	Port name on EUT	Cable Description or reason for no cable	Qty.	Length (m)	Shielded? (Y/N)	Termination Box ID & Port ID
1	NanoM2 - Main	Ethernet	1	10	Y	PSU – POE port
	NanoM2- Secondary	Ethernet	1	10	Y	Unterminated
1	PSU - POE	Ethernet	1	10	Y	NanoM2 - Main
2	PSU - LAN	Ethernet	1	10	Y	Laptop
3	AC port	AC Cable	1	0.5	Y	100-240VAC Source

Table 5. Ports and Cabling Information

2.5 Mode of Operation

Transmit 1-24Mbps, 36-54Mbps at 802.11b/g modes and MCS0-MCS15 at 802.11n modes @2.4GHz.

2.6 Method of Monitoring EUT Operation

IP connectivity is maintained with the EUT. If IP connectivity is lost, EUT connectivity shall be reestablished upon power up or re-boot.

2.7 Modifications to the EUT

No modifications were made to the EUT.

2.8 Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Ubiquiti Networks, Inc. upon completion of testing.

3.0 Electromagnetic Compatibility Emission Criteria

3.1 AC Mains Power Input/Output Ports: Limits for Conducted Emissions

Test Requirement(s): ETSI EN 301 489-1, Clause 8.4:

In accordance with EN 55022 Clause 5.1, the EUT shall meet the Class B limits shown in Table 6:

	Limits for Conducted Emissions of Equipment					
Frequency Range (MHz)	telecommunicat [EN 55022Cl	for use in tion centres only ass A Limits] µV)	[EN 55022 Clas (dΒμ'	-		
	Quasi-Peak	Average	Quasi- Peak	Average		
0.15 - 0.5	79	66	66 to 56	56 to 46		
0.5 - 5	73 60		56	46		
5 - 30	73	60	60	50		

Table 6. Limits of Conducted Disturbance at AC Mains Power Input/Output Ports

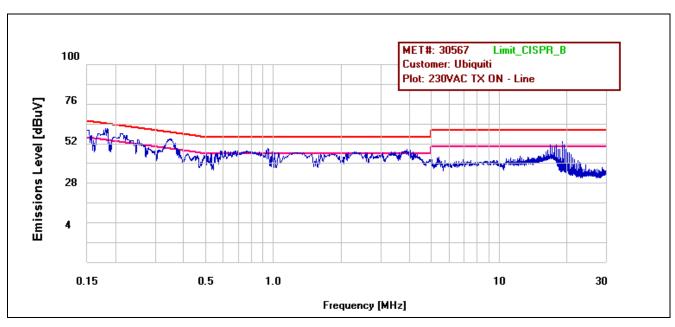
Note: The lower limit shall apply at the transition frequencies. The limits decrease linearly with the logarithm of the frequency in the range of 0.15~MHz to 0.5~MHz.

Test Procedure:

The EUT was placed on a non-metallic table located in a shielded enclosure (See Photograph 2). The measurement was performed using normal operation of the equipment. The method of testing, test conditions, and test procedures of *Clause 9* of *EN 55022* were used. The EMC receiver scanned the frequency range from 150 kHz to 30 MHz. The measurements were performed over the frequency range of 0.15 MHz to 30 MHz using a 50 Ω / 50 μ H as the input transducer to an EMC field intensity meter. The tests were conducted in a RF-shielded enclosure.

Test Results: The EUT was compliant with the specified requirements of Clause 8.4. Measured

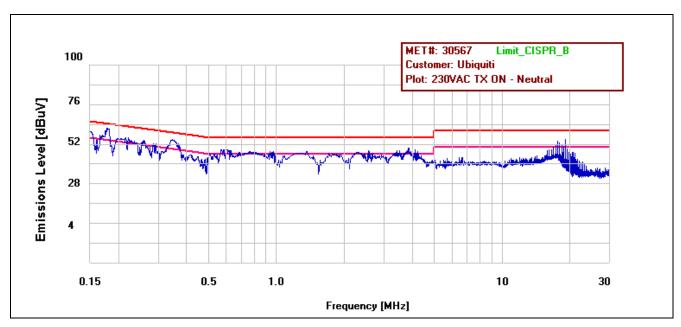
emissions were below applicable limits.


Test Engineer(s): Joe Vang and Lionel Gabrillo

Test Date(s): 03/11/18 and 03/24/11

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
230VAC TX ON - Line	0.1684	54.01	65.042	-11.032	Pass	38.55	55.042	-16.492	Pass
230VAC TX ON - Line	0.351	52.6	58.958	-6.358	Pass	45.44	48.958	-3.518	Pass
230VAC TX ON - Line	2.345	43.53	56	-12.47	Pass	33.88	46	-12.12	Pass
230VAC TX ON - Line	17.23	47.3	60	-12.7	Pass	40.51	50	-9.49	Pass
230VAC TX ON - Line	19.44	48.41	60	-11.59	Pass	42.44	50	-7.56	Pass
230VAC TX ON - Line	0.995	38.37	56	-17.63	Pass	24.061	46	-21.939	Pass

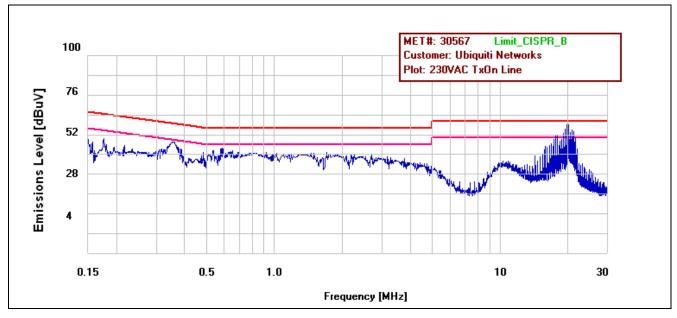
Table 7. Conducted Emissions, AC Power, Phase Line, CETUS Power Supply



Plot 1. Conducted Emission Limits, Phase Line Plot, CETUS Power Supply

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
230VAC									
TX ON -	0.1768	54.06	64.638	-10.578	Pass	41.42	54.638	-13.218	Pass
Neutral									
230VAC									
TX ON -	0.3458	52.77	59.082	-6.312	Pass	45.89	49.082	-3.192	Pass
Neutral									
230VAC									
TX ON -	0.7738	44.56	56	-11.44	Pass	35.43	46	-10.57	Pass
Neutral									
230VAC									
TX ON -	1.28	43.7	56	-12.3	Pass	34.66	46	-11.34	Pass
Neutral									
230VAC									
TX ON -	19.1	49.29	60	-10.71	Pass	42.26	50	-7.74	Pass
Neutral									
230VAC									
TX ON -	17.64	49.94	60	-10.06	Pass	42.82	50	-7.18	Pass
Neutral									

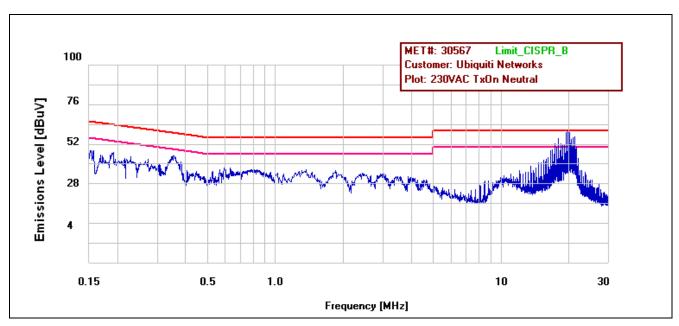
Table 8. Conducted Emissions, AC Power, Neutral Line, CETUS Power Supply



Plot 2. Conducted Emission Limits, Neutral Line Plot, CETUS Power Supply

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
230VAC TxOn Line	19.82	54.39	60	-5.61	Pass	49.25	50	-0.75	Pass
230VAC TxOn Line	.167	39.23	65.111	-25.881	Pass	27.88	55.111	-27.231	Pass
230VAC TxOn Line	.357	46.38	58.818	-12.438	Pass	37.68	48.818	-11.138	Pass

Table 9. Conducted Emissions, AC Power, Phase Line, GME Power Supply



Plot 3. Conducted Emission Limits, Phase Line Plot, GME Power Supply

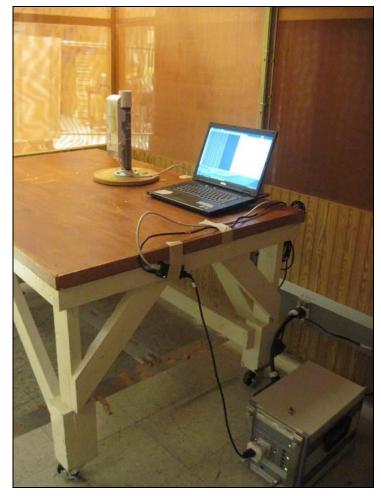

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
230VAC TxOn Neutral	19.82	55.03	60	-4.97	Pass	49.73	50	-0.27	Pass
230VAC TxOn Neutral	.347	44.37	59.053	-14.683	Pass	34.32	49.053	-14.733	Pass
230VAC TxOn Neutral	.171	38.83	64.915	-26.085	Pass	25.54	54.915	-29.375	Pass

Table 10. Conducted Emissions, AC Power, Neutral Line, GME Power Supply

Plot 4. Conducted Emission Limits, Neutral Line Plot, GME Power Supply

Photograph 2. AC Mains Power Conducted Disturbance, Test Setup

3.2 Harmonic Current Emissions

Test Requirement(s): ETSI EN 301 489-1, Clause 8.5:

Per *EN 61000-3-2+A1, Clause 7*, the EUT must not produce harmonic currents, which exceed the limits expressed in Table 11.

Harmonic Order	Maximum Permissible Harmonic Current (in Amperes)						
Odd Ha	Odd Harmonics						
3	2.30						
5	1.14						
7	0.77						
9	0.40						
11	0.33						
13	0.21						
15 < n < 39	0.15 - 15/n						
Harmonic Order	Maximum Permissible Harmonic Current (in Amperes)						
Even Ha	rmonics						
2	1.08						
4	0.43						
6	0.30						
8< n <40	0.23 - 8/n						

Table 11. Harmonic Current Emission Limits from Section 7 of EN 61000-3-2

Test Procedure:

The EUT was placed on a non-metallic table located in a shielded enclosure (See Photograph 3). The measurement was performed using normal operation of the equipment. The method of testing, test conditions, and test procedures of EN 61000-3-2+A1.

Harmonic Current Emissions

Test Procedure (Con't): ITE is tested with the equipment configured to its rated current. In this case, the

equipment, if necessary, may be configured with its power supplies loaded with additional load (resistive) boards to simulate rated current conditions. For ITE systems designed for use with a manufacturer-supplied power distribution system, e.g. transformers, UPS, power conditioner, etc., compliance with the limits of this standard

shall be met at the input to the power distribution system.

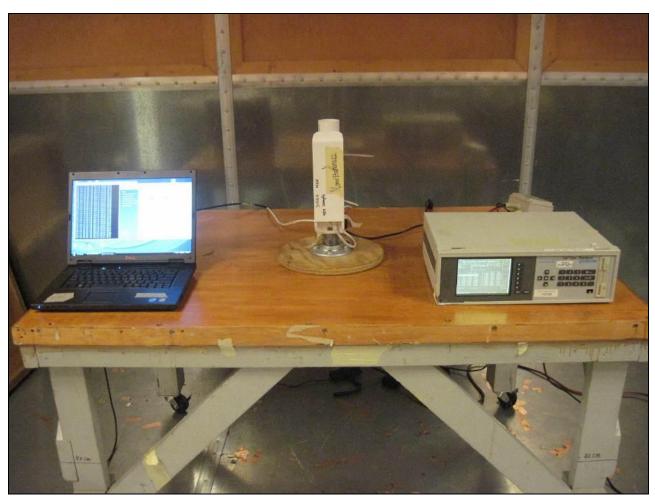
Test Results: The EUT was found compliant with the specified requirements of Clause 8.5. Measured

emissions were below applicable limits.

Test Engineer(s): Lionel Gabrillo

Test Date(s): 02/15/11 and 03/24/11

Class (A, B, C, D)	Voltage (V)	Current (A)	Frequency (Hz)	Total Harmonic Distortion (%)
A	237.72	0.03948	49.997	184.53
Harmonic Odd #	Measured (A)	Class A Limit (A)	Results	Notes
3	0.01737	2.300	Pass	No Anomalies Observed
5	0.01598	1.140	Pass	No Anomalies Observed
7	0.01497	0.770	Pass	No Anomalies Observed
9	0.01271	0.400	Pass	No Anomalies Observed
11	0.01116	0.330	Pass	No Anomalies Observed
13	0.0097	0.21	Pass	No Anomalies Observed
15-39	0.00683 - 0.0006	0.150- 0.058	Pass	No Anomalies Observed
Harmonic Even #	Measured (A)	Class A Limit (A)	Results	Notes
2	0.00281	1.080	Pass	No Anomalies Observed
4	0.00269	0.430	Pass	No Anomalies Observed
6	0.00251	0.300	Pass	No Anomalies Observed
8-40	0.00230 - 0.00026	0.230- 0.046	Pass	No Anomalies Observed


Table 12. Harmonics, Test Results, CETUS Power Supply

Class (A, B, C, D)	Voltage (V)	Current (A)	Frequency (Hz)	Total Harmonic Distortion (%)
A	240.60	0.0566	50.000	282.46
Harmonic Odd #	Measured (A)	Class A Limit (A)	Results	Notes
3	0.0161	2.300	PASS	No Anomalies Observed
5	0.0153	1.140	PASS	No Anomalies Observed
7	0.0155	0.770	PASS	No Anomalies Observed
9	0.0148	0.400	PASS	No Anomalies Observed
11	0.0144	0.330	PASS	No Anomalies Observed
13	0.0140	0.21	PASS	No Anomalies Observed
15-39	0.0137 - 0.0054	0.150- 0.058	PASS	No Anomalies Observed
Harmonic Even #	Measured (A)	Class A Limit (A)	Results	Notes
2	0.0027	1.080	PASS	No Anomalies Observed
4	0.0027	0.430	PASS	No Anomalies Observed
6	0.0026	0.300	PASS	No Anomalies Observed
8-40	0.0025 - 0.0009	0.230- 0.046	PASS	No Anomalies Observed

Table 13. Harmonics, Test Results, GME Power Supply

Harmonic Current Emissions

Photograph 3. Harmonic Current Emissions, Test Setup

3.3 Voltage Fluctuations (Flicker)

Test Requirement(s): ETSI EN 301 489-1, Clause 8.6:

The EUT must not produce voltage fluctuations and/or flicker at the supply terminals as measured or calculated according to clause 4, according to limits expressed in *Clause 5*, under test conditions described in *Clause 6* and *Annex A* of *EN 61000-3-3*.

Test Procedure:

The EUT was placed on a non-metallic table inside a shielded enclosure (See Photograph 4). The EUT was situated such that the sides of the EUT were no closer than 2.0 m from the walls of the shielded enclosure. The EUT was operated with an AC main source at 220 V. Tests to prove the compliance of the EUT with the limits of *EN 61000-3-3*, *Section 5* were made using the test circuit provided in Figure 2 of *EN 61000-3-3*. The test circuit consisted of the test power supply, the reference impedance, the EUT, and a flickermeter. The test supply voltage (open-circuit voltage) was the rated voltage of the equipment. The test voltage was maintained within 2% of the nominal value. The frequency was 50 Hz 0.5%. The total harmonic distortion of the supply voltage was less than 3%. The limits applicable to voltage fluctuations and flicker at the supply terminals of the EUT were automatically measured with the analyzer.

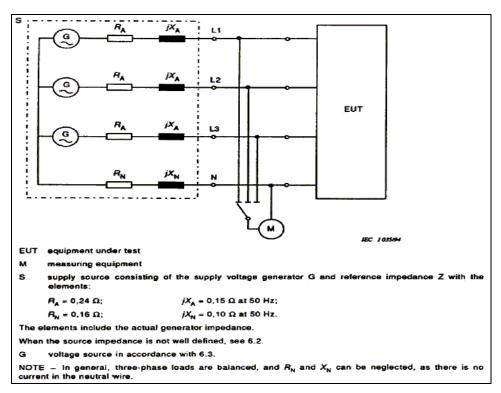


Figure 2. Test Circuit for EN 61000-3-3

Voltage Fluctuations (Flicker)

Test Results: The EUT was found compliant with the specified requirements of Clause 8.6. Measured

emissions were below applicable limits.

Test Engineer(s): Lionel Gabrillo

Test Date(s): 02/15/11 and 03/24/11

Voltage (V)	Current (A)		Fr	equency (Hz)	Power Fa	ctor
240.6	0.0561		50.003		0.279	
Average (Is) 1	elative voltage Droj	p		d(t)	0.002 %	
Relative volt	age fluctuation (3s)			Dpp	0.002	2 %
d(t) at ste	eady - state level			YES /NO	YE	S
Last relative ste	ady - state level cha	nge		Dc	0.000) %
Last tra	ansition swing			Dmax		
Normalize	d peak flicker (3s)			Pp	0.00	
D	rameter			Observation	Period	
ra	irameter			Short	Long	Limit
Observation '	Гіте	Тр		10 min	120 min	
Maximum relative vo	ltage change	dmax	X	0	0	4
Max rel. steady-state v	Max rel. steady-state voltage change dc			0	0	3
Duration of $d(t) > 3 \%$			0	0	0.2	
Short term flicker	Short term flicker severity Pst			0	0	1.0
Long term flicker	severity	Plt		NA	0	0.65

Table 14. Flicker, Test Results, CETUS Power Supply

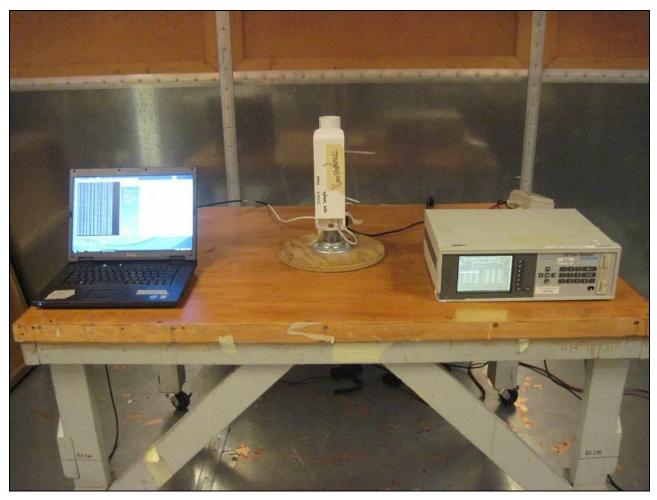

Voltage (V)	Current (A)		Frequency (Hz)	Power Fa	actor	
239.0	0.0522		49.997	0.028	1	
Average (Is)	relative voltage Drop		d(t)	0.002	2 %	
Relative vol	tage fluctuation (3s)		Dpp	0.002	2 %	
d(t) at st	eady - state level		YES/NO	YE	S	
Last relative ste	ady - state level chang	ge	Dc	0.000) %	
Last tr	ansition swing		Dmax			
Normalize	d peak flicker (3s)		Pp	0.00		
n			Observation Period			
ľ	arameter		Short	Long	Limit	
Observation	Time	Тр	10 min	120 min		
Maximum relative vo	oltage change	dmax	0	0	4	
Max rel. steady-state	Max rel. steady-state voltage change dc		0	0	3	
Duration of d(t	Duration of $d(t) > 3 \%$			0	0.2	
Short term flicke	Short term flicker severity Pst			0	1.0	
Long term flicke	r severity	Plt	NA	0	0.65	

Table 15. Flicker, Test Results, GME Power Supply

MET Report: EMC30567-ETS489

Voltage Fluctuations (Flicker)

Photograph 4. Voltage Fluctuations (Flicker), Test Setup

3.4 Telecommunications Ports

Test Requirement(s): ETSI EN 301 489-1, Clause 8.7:

The EUT must be in accordance with EN 55022 (2006), Section 5.2.

The EUT shall meet the Conducted Common Mode limits shown in Table 16:

Frequency Range	Voltage Lin	nits (dBµV)	Current Limits (dBµA)		
(MHz)	Quasi-Peak	Average	Quasi- Peak	Average	
0.15 - 0.5	84 to 74	74 to 64	40 to 30	30 to 20	
0.5 - 30	74	64	30	20	

Note: The limits decrease linearly with the logarithm of the frequency in the range of 0.15 MHz to 0.5 MHz. The current and voltage disturbnace limits are derived for use with an ISN which presents a common mode (asymetric mode) impedance of 150 Ω to the telecommunication port under test (conversion factor is $20 \text{ Log}_{10} 150/1 = 44 \text{ dB}$).

Table 16. Limits of Conducted Common Mode (Asymmetric Mode) Disturbance at Telecommunication Ports from Clause 5.2 of EN 55022 Class B

Test Procedure:

The EUT was placed on a non-metallic table located in a shielded enclosure (See Photograph 5). The measurements were performed using normal operation of the equipment. The method of testing, test conditions, and test procedures of *Clause 9* of *EN 55022* were used. The EMC receiver scanned the frequency range from 150 kHz to 30 MHz. The measurements were performed over the frequency range of 0.15 MHz to 30 MHz using an ISN, Current Probe or Capacitive Voltage Probe as the input transducer to an EMC field intensity meter.

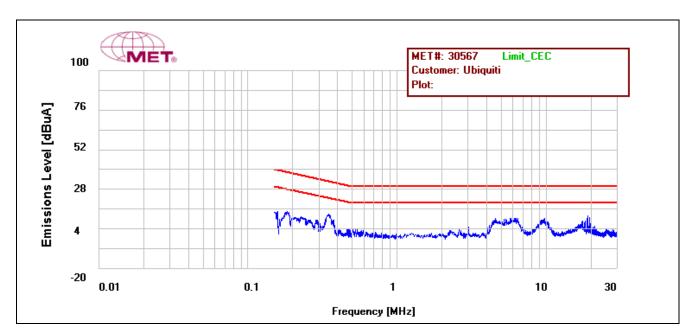
Environmental Conditions for Conducted Emission				
Ambient Temperature:	22°C			
Relative Humidity:	32 %			

Test Results: The EUT was found compliant with the requirement(s) of this section. Measured

emissions were below applicable limits.

Test Engineer(s): Joe Vang and Lionel Gabrillo

Test Date(s): 03/18/11 and 03/24/11

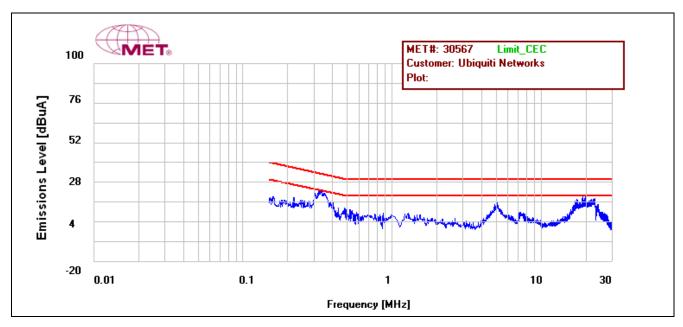


Limits for Conducted Disturbance at Telecommunication Ports

Conducted Emissions - Voltage for Telecommunication Ports, Worst Case Emissions, LAN Line

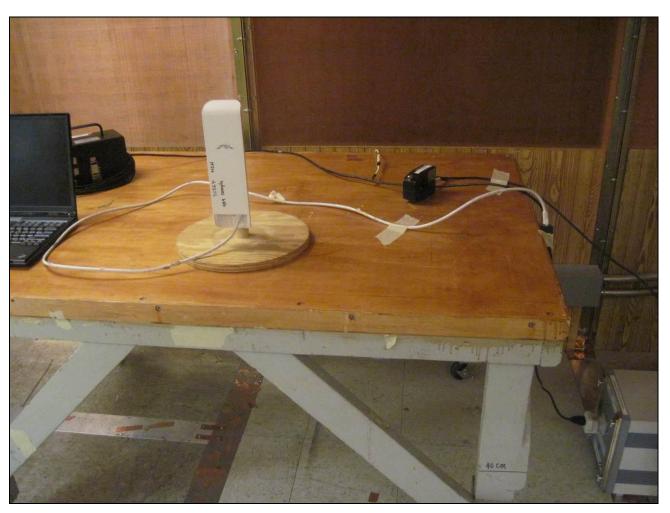
Line	Frequency (MHz)	Raw	QP Amplitude	QP Limit	Delta	Pass/Fail	Raw	Average Amplitude	Average Limit	Delta	Pass/Fail
LAN Port	0.350	28.81	6.81	32.962	-26.152	Pass	22.25	0.25	22.962	-22.712	Pass
LAN Port	0.1768	30.11	8.11	38.635	-30.525	Pass	22.98	0.98	28.635	-27.655	Pass
LAN Port	6.07	24.22	2.22	30	-27.78	Pass	18.23	-3.77	20	-23.77	Pass
LAN Port	9.64	23.67	1.67	30	-28.33	Pass	18.0	-4	20	-24	Pass
LAN Port	17.04	23.01	1.01	30	-28.99	Pass	13.43	-8.57	20	-28.57	Pass
LAN Port	18.74	17.17	-4.83	30	-34.83	Pass	9.98	-12.02	20	-32.02	Pass

Table 17. Conducted Disturbance at Telecommunication Ports Test Results, LAN, CETUS Power Supply



Plot 5. Conducted Emission Limits for Telecommunications Ports, LAN Plot, CETUS Power Supply

Line	Frequency (MHz)	Raw	QP Amplitude	QP Limit	Delta	Pass/Fail	Raw	Average Amplitude	Average Limit	Delta	Pass/Fail
LAN	.336	47.2	15.2	33.302	-18.102	Pass	41.13	9.13	23.302	-14.172	Pass
LAN	4.99	38.3	6.3	30	-23.7	Pass	30.9	-1.1	20	-21.1	Pass
LAN	19.44	47.9	15.9	30	-14.1	Pass	43.3	11.3	20	-8.7	Pass
LAN	24.25	33.7	1.7	30	-28.3	Pass	26.51	-5.49	20	-25.49	Pass
LAN	4.88	37.25	5.25	30	-24.75	Pass	29.75	-2.25	20	-22.25	Pass
LAN	.156	48.3	16.3	39.674	-23.374	Pass	42.19	10.19	29.674	-19.484	Pass


Table 18. Conducted Disturbance at Telecommunication Ports Test Results, LAN, GME Power Supply

Plot 6. Conducted Emission Limits for Telecommunications Ports, LAN Plot, GME Power Supply

Limits for Conducted Disturbance at Telecommunication Ports

Photograph 5. Limits for Conducted Disturbance at Telecommunication Ports

4.0 Electromagnetic Compatibility Immunity Criteria

4.1 Radio Frequency Electromagnetic Field

Test Requirement(s): ETSI EN 301 489-1, Clause 9.2:

Per *EN 61000-4-3*, the EUT must not be susceptible to a radiated electromagnetic field of 3 V/m, 80% amplitude modulated, in the frequency range 80 MHz to 1000 MHz and 1400 MHz – 2700 MHz (EN 61000-4-3). Performance criterion A applies.

The EUT was placed on a non-metallic table in the center of a 20' x 12' x 8' enclosure, and the radiating antenna was placed 3 m in front of the EUT (See Photograph 7). Support equipment for the EUT was located outside of the test room. The EUT was exposed to the required immunity fields. The amplitude and frequency of the radiated interference was set by an automated, computer-controlled system.

The chamber and signal generation/amplification system is calibrated to insure a uniform RF field with no EUT present. The recorded signal is played back by the controlling computer with the EUT placed in the area of uniform field. The signal source was stepped through the applicable frequency range at a rate no faster than 1% of the fundamental, as recommended in EN 61000- 4-3. The signal was amplitude modulated 80% over the frequency range 80 MHz to 1000 MHz and 1400 MHz to 2700 MHz at a level of 3 V/m. Field presence was monitored during testing via a field probe placed in close proximity to the EUT. Throughout testing, the EUT was closely monitored for signs of susceptibility. The test was performed with the antennae oriented in both a horizontal and vertical polarization. Testing was performed in a semi-anechoic chamber.

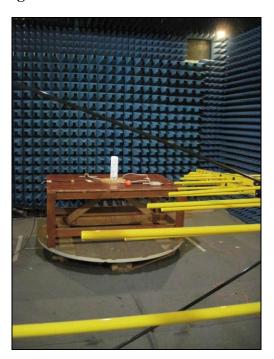
Test Results: The EUT as tested was compliant with the requirements of Clause 9.2. Measured

emissions were below applicable limits.

Test Engineer(s): Lionel Gabrillo

Test Date(s): 02/21/11 and 04/27/11

Start	Stop	Severity	Polarity	Modulation	Results			
Frequency (MHz)	Frequency (MHz)	(V/m)	(H/V)	(Freq. & Type)	Front	Back	Left	Right
80	1000	3	V	1 kHz, 80% AM	Pass	Pass	Pass	Pass
80	1000	3	Н	1 kHz, 80% AM	Pass	Pass	Pass	Pass
1400	2700	3	V	1 kHz, 80% AM	Pass	Pass	Pass	Pass
1400	2700	3	Н	1 kHz, 80% AM	Pass	Pass	Pass	Pass


Table 19. Radiated Immunity, Test Results, CETUS Power Supply

Start	Stop	Severity	Polarity	Modulation	Results			
Frequency (MHz)	Frequency (MHz)	(V/m)	(H/V)	(Freq. & Type)	Front	Back	Left	Right
80	1000	3	V	1 kHz, 80%AM	Pass	Pass	Pass	Pass
80	1000	3	Н	1 kHz, 80% AM	Pass	Pass	Pass	Pass
1400	2700	3	V	1 kHz, 80% AM	Pass	Pass	Pass	Pass
1400	2700	3	Н	1 kHz, 80%AM	Pass	Pass	Pass	Pass

Table 20. Radiated Immunity, Test Results, GME Power Supply

Radio Frequency Electromagnetic Field

Photograph 6. Radiated Immunity, Test Setup, 80 MHz - 1 GHz

Photograph 7. Radiated Immunity, Test Setup, 1.4 GHz – 2.7 GHz

Electromagnetic Compatibility Immunity

4.2 Electrostatic Discharge

Test Requirement(s): ETSI EN 300 489-1 Clause 9.3:

Per *EN 61000-4-2*, the EUT was tested with air discharges of up to \pm 8 kV, applied to non-conductive surfaces, and to contact discharges of up to \pm 4 kV, applied to conductive surfaces of the EUT, the HCP and the VCP. Performance Criterion B applies.

The EUT was placed on a non-metallic table located above a ground reference plane (GRP) (See Photograph 17), with a thickness of at least 0.25 mm, thus satisfying the requirements of *IEC* 61000-4-2:

It [the GRP] shall be a metallic sheet (copper or aluminum) of 0.25 mm minimum thickness.... The minimum size of the reference plane is 1 m2, the exact size depending on the dimensions of the EUT. It shall project beyond the EUT or coupling plane by at least 0.5 m on all sides....

A horizontal coupling plane (HCP), $1.6 \text{ m} \times 0.8 \text{ m}$, shall be placed on the table. The EUT and cables shall be isolated from the coupling plane by an insulating support 0.5 mm thick.

A copper vertical coupling plane (VCP) measuring 0.5 m X 0.5 m was placed 0.1 m from the EUT. The VCP was connected to the GRP through two series 470 k Ω resistors. The GRP was connected to safety ground. The EUT was connected to the grounding system through its power cable only, in accordance with EN 61000-4-2, Section 7.1, paragraph 4:

The EUT shall be connected to the grounding system in accordance with its installation specifications. No additional grounding connections are allowed.

Ambient Temperature:	24°C		
Relative Humidity:	34%		
Atmospheric Pressure:	101.3 kPa		

Environmental Conditions during EN 61000-4-2 Testing, CETUS Power Supply

Ambient Temperature:	20.6°C
Relative Humidity:	30%
Atmospheric Pressure:	101.9 kPa

Environmental Conditions during EN 61000-4-2 Testing, GME Power Supply

MET Report: EMC30567-ETS489 © 2011, MET Laboratories, Inc. Page 28 of 51

Electrostatic Discharge

Test Procedure: Air discharges of up to \pm 8kV were applied to non-conductive surfaces. Contact

discharges of up to \pm 4 kV were applied to conductive surfaces of the EUT. Contact discharges of \pm 4 kV were applied to the VCP. Negative and positive discharges were applied at least ten times to each selected discharge point. The functionality of the EUT was determined during and after each discharge in accordance with Performance

Criterion B

Test Results: The EUT as tested was compliant with the requirements of Clause 9.3.

Test Engineer(s): Anderson Soungpanya

Test Date(s): 03/25/11

Discharge	Test Voltage		Res	ults		Amanualias
Type	(±kV)	Front	Back	Left	Right	Anomalies
VCP	2	PASS	PASS	PASS	PASS	None
VCF	4	PASS	PASS	PASS	PASS	Random drop packets on LAN Line None
НСР	2	PASS	PASS	PASS	PASS	None
псг	4	PASS	PASS	PASS	PASS	Random drop packets on LAN Line None
Contact	2	PASS	PASS	PASS	PASS	None
Discharge	4	PASS	PASS	PASS	PASS	Random drop packets on LAN Line None
	2	PASS	PASS	PASS	PASS	None
Air	4	PASS	PASS	PASS	PASS	Random drop packets on LAN Line
Discharge	6	PASS	PASS	PASS	PASS	Random drop packets on LAN Line
	8	PASS	PASS	PASS	PASS	Random drop packets on LAN Line

Table 21. Electrostatic Discharge, Test Results, CETUS Power Supply

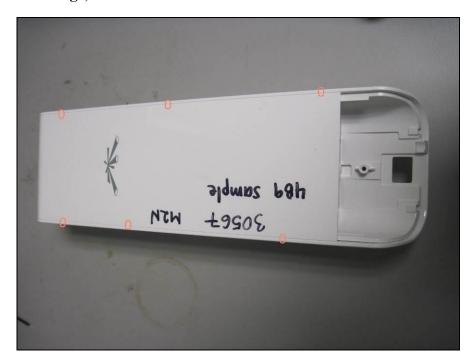
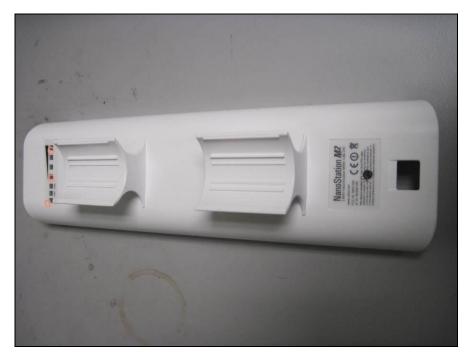

Discharge	Test Voltage		Results			Anomalies
Type	$(\pm kV)$	Front	Back	Left	Right	Anomanes
VCP	2	PASS	PASS	PASS	PASS	None
VCF	4	PASS	PASS	PASS	PASS	None
НСР	2	PASS	PASS	PASS	PASS	None
псг	4	PASS	PASS	PASS	PASS	None
Contact	2	PASS	PASS	PASS	PASS	None
Discharge	4	PASS	PASS	PASS	PASS	None
	2	PASS	PASS	PASS	PASS	None
Air	4	PASS	PASS	PASS	PASS	None
Discharge	6	PASS	PASS	PASS	PASS	None
	8	PASS	PASS	PASS	PASS	None

Table 22. Electrostatic Discharge, Test Results, GME Power Supply

MET Report: EMC30567-ETS489

Electrostatic Discharge, Test Points


Photograph 8. ESD, Test Points, Top View 1, CETUS Power Supply

Photograph 9. ESD, Test Points, Top View 2, CETUS Power Supply

O = Air Discharge X = Contact Discharge

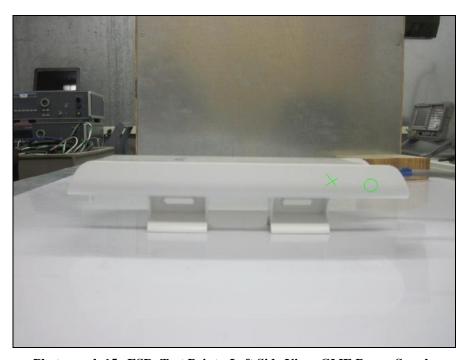
Photograph 10. ESD, Test Points, Rear View, CETUS Power Supply

Photograph 11. ESD, Test Points, CETUS Power Supply

O = Air DischargeX = Contact Discharge

Photograph 12. ESD, Test Points, Top View, GME Power Supply

Photograph 13. ESD, Test Points, Bottom View, GME Power Supply


O = Air Discharge

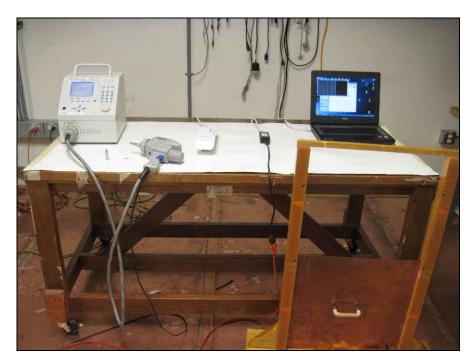
X = Contact Discharge

Photograph 14. ESD, Test Points, Front View, GME Power Supply

Photograph 15. ESD, Test Points, Left Side View, GME Power Supply

O = Air Discharge

X = Contact Discharge



Photograph 16. ESD, Test Points, Rear Side View, GME Power Supply

O = Air Discharge X = Contact Discharge

Photograph 17. Electrostatic Discharge, Test Setup, CETUS Power Supply

Photograph 18. Electrostatic Discharge, Test Setup, GME Power Supply

4.3 Fast Transient, Common Mode

Test Requirement(s): ETSI EN 300 489-1, Clause 9.4:

Per EN 61000-4-4, The EUT was tested with the electrical fast transients shown in Figure 3, having an amplitude of \pm 1 kV applied to the AC power cables (plug type); \pm 0.5 kV applied to I/O and data lines. Only cables that could potentially exceed 3 m in length in real-world application of the EUT need be tested. Performance criterion B applies for all tests.

Test Procedure:

The EUT was placed on a non-metallic table above a GRP extending at least 1 m beyond all sides of the EUT (See Photograph 19). The Electrical Fast Transient/Burst (EFT/B) generator and the coupling clamp were mounted to the ground plane. For application of the fast transients to the power lines, power was supplied to the EUT through the EFT/B generator. For application of the fast transients to I/O, data and control lines, the cables were individually placed in the coupling clamp, which was also connected to the EFT/B generator.

The EFT/B generator was operated to couple the required transient bursts to each line of the power input in common mode. Transient bursts were applied for a period not less than one minute with both positive transients and negative transients.

The EUT was then powered from an isolated circuit, and selected I/O, data and control cables were placed one at a time in the capacitive coupling clamp. The EFT/B generator was operated to inject the required bursts onto each selected cable via the coupling clamp.

Throughout testing, the EUT was monitored closely for signs of susceptibility.

Fast Transient, Common Mode

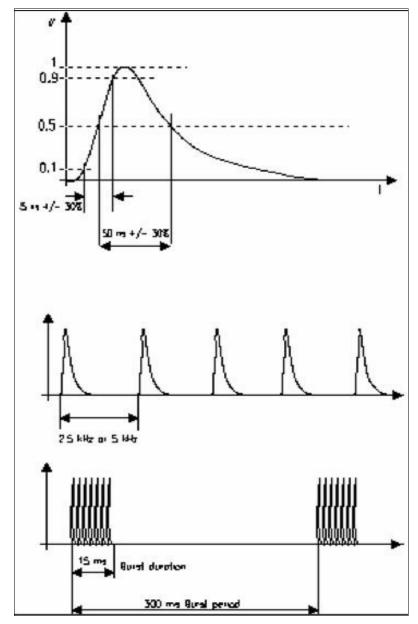


Figure 3. EN 61000-4-4 Test Waveform

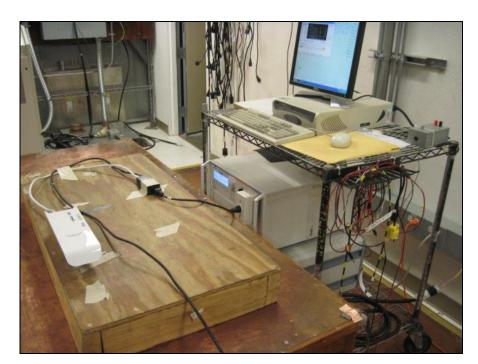
Fast Transient, Common Mode

Test Results: The EUT as tested was found compliant with the requirements of Clause 9.4.

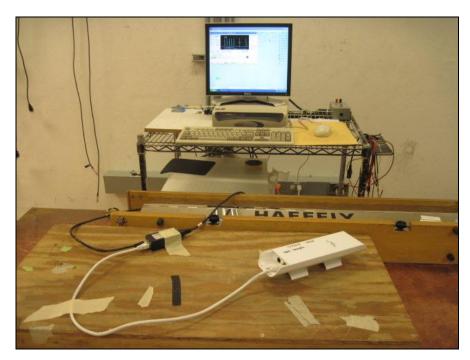
Test Engineer(s): Joe Vang and Lionel Gabrillo

Test Date(s): 03/11/11 and 04/05/11

Port Name	Slot/EUT Side	Test Level	Result	Anomalies			
AC Power							
Phase	Bottom	±1 kV	Pass	Pinging stopped but came back to normal after the test.			
Neutral	Bottom	±1 kV	Pass	Pinging stopped but came back to normal after the test.			
Ground	Bottom	±1 kV	Pass	Pinging stopped but came back to normal after the test.			
Port Name	Slot/EUT Side	Test Level	Result	Anomalies			
I/O Cables							
LAN Port	Bottom	±0.5 kV	Pass	No Anomalies			


Table 23. Fast Transient, Test Results, CETUS Power Supply

Port Name	Slot/EUT Side	Test Level	Result	Anomalies				
	AC Power							
Phase	Bottom	±1 kV	Pass	No Anomalies				
Neutral	Bottom	±1 kV	Pass	No Anomalies				
Ground	Bottom	±1 kV	Pass	No Anomalies				
Port Name	Slot/EUT Side	Test Level	Result	Anomalies				
	I/O Cables							
LAN Port	Bottom	±0.5 kV	Pass	No Anomalies				


Table 24. Fast Transient, Test Results, GME Power Supply

Fast Transient, Common Mode

Photograph 19. Fast Transient, Common Mode, Test Setup, AC Mode

Photograph 20. Fast Transient, Common Mode, Test Setup, I/O Cables

4.4 Radio Frequency, Common Mode

Test Requirement(s): ETSI EN 300 489-1, Clause 9.5:

Per *EN 61000-4-6*, all interconnecting cables on the EUT including AC power lines, data and control lines shall be tested for immunity to conducted radio frequencies in the range 0.15 MHz - 80 MHz. Using the bulk current injection method, I/O and data cables must be tested to a level of 3 Vrms. The injection voltage shall be amplitude modulated at 80% by a 1 kHz tone. Performance Criterion A applies for all tests.

Test Procedure:

The EUT was placed on a non-metallic table above a GRP extending at least 1 m beyond all sides of the EUT (See Photograph 21). For power line cables, a Coupling Decoupling Network (CDN) was used. The CDN was initially calibrated in a calibration jig with a 50 Ω RF load and a 100 Ω matching resistor on one side, and a 100 Ω matching resistor and the receiver (spectrum analyzer) on the other. The injection voltage level was adjusted to maintain a monitored voltage of 3 Vrms across the frequency range (0.15 MHz to 80 MHz).

For cables other than the power line in the frequency range 0.15 MHz - 80 MHz, the BCI was initially calibrated in a calibration jig with a 50 Ω RF load and a 100 Ω matching resistor on one side, and a 100 Ω matching resistor and the receiver (spectrum analyzer) on the other. The injection voltage level was adjusted to maintain a monitored voltage of 3 Vrms across the frequency range (0.15 MHz to 80 MHz). The BCI was clamped around the cable under test at a distance of 0.1 to 0.3 m from the EUT.

Radio Frequency, Common Mode

Test Results: The EUT as tested was found compliant with the requirements of Clause 9.5.

Test Engineer(s): Joe Vang

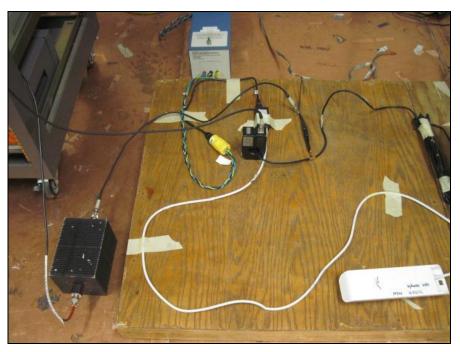
Test Date(s): 03/14/11 and 04/20/11

Cable Ref. ID	Port Name On EUT	Severity (Vrms)	Modulation (Freq. & Type)	Results	Anomalies
	AC Port	3	1 kHz, 80% AM	Pass	No Anomalies
	PSU-LAN	3	1 kHz, 80% AM	Pass	No Anomalies

Table 25. Conducted Immunity, Test Results, CETUS Power Supply

Port Name On EUT	Severity (Vrms)	Modulation (Freq. & Type)	Results	Anomalies
AC Port	3	1 kHz, 80%AM	Pass	No Anomalies
PSU-LAN	3	1 kHz, 80%AM	Pass	No Anomalies

Table 26. Conducted Immunity, Test Results, GME Power Supply


MET Report: EMC30567-ETS489

Radio Frequency, Common Mode

Photograph 21. Radio Frequency, Common Mode, Test Setup, AC Mode

Photograph 22. Radio Frequency, Common Mode, Test Setup, I/O Mode

4.5 Voltage Dips and Short Interruptions

Test Requirement(s): ETSI EN 300 489-1, Clause 9.7:

Per EN 61000-4-11, the EUT shall be tested for the following voltage dips, interruptions and variations:

5.2.4.4 Voltage Dips and Short Interruptions							
Unit Test level and Characteristic Performance Criteri							
Voltage reduction %	>95	В					
Duration ms	10	В					
Voltage reduction %	>95	D					
Duration ms	20	В					
Voltage reduction %	30	C					
Duration ms	500	C					
Voltage reduction %	>95	C					
Duration ms	5000	C					

Table 27. Voltage Dips and Short Interruptions Limits

Test Procedure: The EUT was placed on a non-metallic table and situated in the center of a GRP. The

EUT was provided with AC power via the programmable power supply (See Photograph 23). The power supply was programmed to perform the applicable set of voltage dips, interruptions and variations. Each sequence was repeated three times to verify the

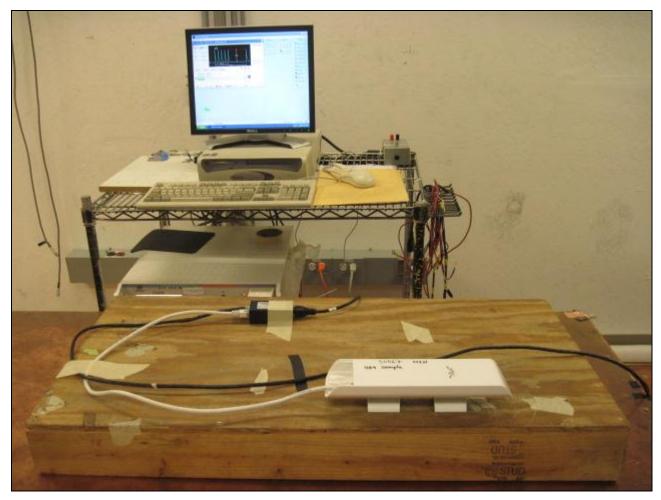
results.

Results: The EUT as tested was found compliant with the requirements of Clause 9.7.

Test Engineer: Joe Vang and Lionel Gabrillo

Test Date: 03/11/11 and 04/05/11

Test Type	Parameters	No of Rep.	Criterion Required	Criterion Achieved	Results	Anomalies
Voltage Dips	0% drop for 10 ms or 1/2 cycle	3	В	A	Pass	No Anomalies
Voltage Dips	0% drop for 20 ms or 1 cycle	3	В	A	Pass	No Anomalies
Voltage Dips	70% drop for 500 ms or 25 cycles	3	С	A	Pass	No Anomalies
Short Interrupts	0% drop for 5000 ms or 250 cycles	3	С	В	Pass	EUT turns off, but recovers with no intervention.


Table 28. Voltage Dips and Interruptions, Test Results, CETUS Power Supply

Test Type	Parameters	No of Rep.	Criterion Required	Criterion Achieved	Results	Anomalies
Voltage Dips	0% drop for 10 ms or 1/2 cycle	3	В	A	Pass	No Anomalies
Voltage Dips	0% drop for 20 ms or 1 cycle	3	В	A	Pass	No Anomalies
Voltage Dips	70% drop for 500 ms or 25 cycles	3	С	В	Pass	EUT turns off, but recovers with no intervention.
Short Interrupts	0% drop for 5000 ms or 250 cycles	3	С	В	Pass	EUT turns off, but recovers with no intervention.

Table 29. Voltage Dips and Interruptions, Test Results, GME Power Supply

Voltage Dips and Short Interruptions

Photograph 23. Voltage Dips and Interruptions, Test Setup

4.6 Surges

Test Requirement(s): ETSI EN 301 489-1, Clause 9.8:

The EUT was tested with the surge waveforms shown on the following page, having an open circuit amplitude of \pm 1.0 kV applied to the I/O interconnection cables. Performance criterion A applies for I/O cables.

The EUT was tested with the surge waveforms shown on the following page, having an open circuit amplitude of \pm 2 kV (differential mode), and \pm 2 kV (common mode) applied to the AC power cables. Performance Criterion A applies for AC power cables.

Test Procedure:

The EUT was placed on a non-metallic table above a GRP extending at least 1 m beyond all sides of the EUT (See Photograph 24). For I/O port surges, For application of the fast transients to I/O, data and control lines, the cables were individually placed in the coupling clamp, which was also connected to the EFT/B generator. These three tests were performed with positive surges and negative surges.

AC power [where applicable] was supplied to the EUT through the Combination Wave Generator. The combination wave generator was configured to produce the following output:

Open Circuit Voltage:	Front Time = 1.2 μ s Time to Half = 50 μ s
Short Circuit Current:	Front Time = 8 μ s Time to Half = 20 μ s
Telecom wave parameters:	Front Time = $10 \mu s$ Time to Half = $700 \mu s$

Table 30. Combination Wave Generator Test Parameters for EN 61000-4-5

MET Report: EMC30567-ETS489 © 2011, MET Laboratories, Inc. Page 46 of 51

Surges

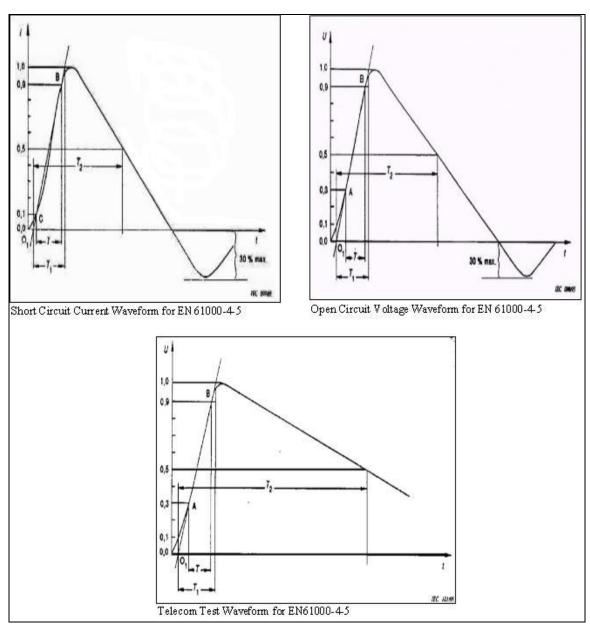


Figure 4. EN 61000-4-5 Surge Test Waveforms

Surges

Test Procedure

(Continued): For AC power lines, the Combination Wave Generator was operated to couple the

required surges between each EUT input power phase and ground, and from line to line. These three tests were performed with positive surges and negative surges, synchronized with the power input phase at 0° , 90° , and 270° . Throughout testing, the EUT was monitored closely for signs of susceptibility. For I/O port surges, surge waveforms were

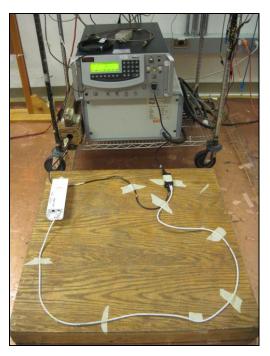
applied via a CDN, in accordance with Section 7 of EN 61000-4-5.

Test Results: The EUT as tested was found compliant with the requirements of Clause 9.8.

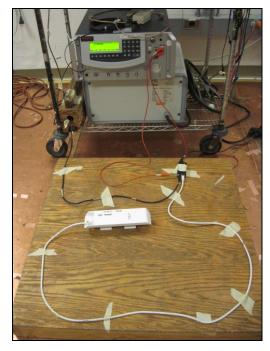
Test Engineer(s): Joe Vang

Test Date(s): 03/09/11 and 04/22/11

Port Name / Coupling	Phase	Test Level	Results	Anomalies				
AC, Differential Mode								
Phase to Neutral	0, 90, 180, 270	±1.0 kV	pass	None				
	AC, Common Mode							
Phase to Ground	0, 90, 180, 270	±2.0 kV	pass	None				
Neutral to Ground	0, 90, 180, 270	±2.0 kV	pass	None				
Port Name / Coupling	Phase	Test Level	Results	Anomalies				
IO, Differential Mode								
Phase to Neutral	n/a	±1.0 kV	pass	None				


Table 31. Surges, Test Results, CETUS Power Supply

Port Name	Cable Ref. ID	Coupling	Phase	Test Level	Results	Anomalies			
	AC, Differential Mode								
			0	±1.0 kV	Pass	No Anomalies			
Phase to	POE	Phase to Neutral	90	±1.0 kV	Pass	No Anomalies			
Neutral	FOE	Filase to Neutral	180	±1.0 kV	Pass	No Anomalies			
			270	±1.0 kV	Pass	No Anomalies			
		AC, Com	mon Mode	·					
			0	±2.0 kV	Pass	No Anomalies			
Phase to	POE	Phase to Ground	90	±2.0 kV	Pass	No Anomalies			
Ground			180	±2.0 kV	Pass	No Anomalies			
			270	±2.0 kV	Pass	No Anomalies			
			0	±2.0 kV	Pass	No Anomalies			
Neutral to	POE	Neutral to	90	±2.0 kV	Pass	No Anomalies			
Ground	POE	Ground	180	±2.0 kV	Pass	No Anomalies			
			270	±2.0 kV	Pass	No Anomalies			
	I/O Cables								
Poi	rt Name	Phase	Test Level		Results	Anomalies			
LA	AN Port	Phase to Neutral	±	l kV	Pass	No Anomalies			


Table 32. Surges, Test Results, GME Power Supply

Surges

Photograph 24. Surges, Test Setup, AC Mode

Photograph 25. Surges, Test Setup, I/O Mode

5.0 Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ANSI/NCSL Z540-1-1994 and ANSI/ISO/IEC 17025:2000.

Test Name: AC Conducted Emissions Voltage Clause 8.4			Test Date(s): 03/23/11			
MET Asset #	Nomenclature	Manufacturer	Model	Last Cal Date	Cal Due Date	
1S2671	TRANSIENT LIMITER	AGILENT TECHNOLOGIES	11947A	SEE NOTE		
1S2460	1-26GHZ SPECTRUM ANALYZER	AGILENT	E4407B	07/13/2010	07/13/2011	
1S2668	AMPLIFIER	SONOMA INSTRUMENTS	310 N	SEE NOTE		
1S2657	SCREEN ROOM	ETS LINDGREN	14W-2/2-0	SEE NOTE		
1S2507	LISN	SOLAR ELECTRONICS COMPANY	9252-50-R-24-BNC	02/17/2011	02/17/2012	
Test Name: Harn	nonic Current Emissions Cla	Test Date(s): 03/22/11				
MET Asset #	Nomenclature	Manufacturer	Model	Last Cal Date	Cal Due Date	
1S2398	POWER MEASUREMENT UNIT	COMBINOVA	A300	03/31/2010	03/31/2011	
Test Name: Voltage Fluctuations (Flicker) Clause 8.6			Test Date(s): 03/22/11			
MET Asset #	Nomenclature	Manufacturer	Model	Last Cal Date	Cal Due Date	
1S2398	POWER MEASUREMENT UNIT	COMBINOVA	A300	03/31/2010	03/31/2011	
Test Name: Telecom Line Conducted Emissions Clause 8.7			Test Date(s): 03/24/11			
MET Asset #	Nomenclature	Manufacturer	Model	Last Cal Date	Cal Due Date	
1S2671	TRANSIENT LIMITER	AGILENT TECHNOLOGIES	11947A	SEE NOTE		
1S2460	1-26GHZ SPECTRUM ANALYZER	AGILENT	E4407B	07/13/2010	07/13/2011	
1S2668	AMPLIFIER	SONOMA INSTRUMENTS	310 N	SEE NOTE		
1S2657	SCREEN ROOM	ETS LINDGREN	14W-2/2-0	SEE NOTE		
1S2507	LISN	SOLAR ELECTRONICS COMPANY	9252-50-R-24-BNC	02/17/2011	02/17/2012	
Test Name: Radia	ated Electromagnetic Field C	Test Date(s): 04/27/11				
MET Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date	
1S2576	AMPLIFIER (80M-1GHZ)	AMPLIFIER RESEARCH	500W1000A	SEE NOTE		
		LINDGREN RF	IMMUNITY	07/29/2010	07/29/2011	
1S2264	CHAMBER 3	ENCLOSURES	CHAMBER	07/29/2010	07/29/2011	
1S2264 1U0200	CHAMBER 3 FIELD MONITOR		CHAMBER FM 7004		NOTE	
		ENCLOSURES				
1U0200	FIELD MONITOR FIELD PROBE BILOG ANTENNA	ENCLOSURES AR WORLDWIDE	FM 7004	SEE 1 03/30/2011	NOTE	
1U0200 1S2674	FIELD MONITOR FIELD PROBE	ENCLOSURES AR WORLDWIDE AMPLIFIER RESEARCH	FM 7004 FP7060	SEE 1 03/30/2011 SEE 1	NOTE 03/30/2012	
1U0200 1S2674 1S2401	FIELD MONITOR FIELD PROBE BILOG ANTENNA	ENCLOSURES AR WORLDWIDE AMPLIFIER RESEARCH SCHAFFNER	FM 7004 FP7060 CBL6140A	SEE 1 03/30/2011 SEE 1	NOTE 03/30/2012 NOTE	

Test Name: Elect	rostatic Discharge Immunity	Test Date(s): 03/25/11			
MET Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date
1S2470	ESD DISCHARGE MODULE	NOISEKEN	ESS-2000	04/26/2010	04/26/2011
1S2491	GROUND PLANE #3	N/A	GROUND PLANE	SEE NOTE	
Test Name: Fast Transients Clause 9.4			Test Date(s): 04/05/11		
MET Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date
1S2423	ULTRA COMPACT SIMLULATOR	EM TEST	UCS-500M-6A	SEE NOTE	
1S2490	GROUND PLANE 2	MET LABS	N/A	SEE NOTE	
1S2104	CLAMP, COUPLING, CAPACITIVE	HEAFELY	N/A	SEE NOTE	
Test Name: Radio	Frequency, Conducted Con	Test Date(s): 04/20/11			
MET Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date
1S2491	GROUND PLANE 3	GROUND PLANE 3	GROUND PLANE 3	SEE NOTE	
1S2624	POWER LINE COUPLING DECOUPLING NETWORK	COM-POWER CORP.	CDN M3-25	SEE NOTE	
1S2514	3DB ATTENUATOR	JFW	50FH-003-300	SEE NOTE	
1S2390	SYNTHESIZED SIGNAL GENERATOR	GIGATRONICS	6061A	06/24/2010	06/24/2011
1S2578	AMPLIFER (10K- 250MHZ)	AMPLIFIER RESEARCH	75A250A	SEE NOTE	
1S2394	CURRENT PROBLE	FCC	F-120-9A	11/22/2010 11/22/2011	
1S2671	TRANSIENT LIMITER	AGILENT TECHNOLOGIES	11947A	SEE NOTE	
1S2649	SPECTRUM ANALYZER 9KHZ-1.5GHZ	AGILENT	E4401B	SEE NOTE	
1S2621	CI FIXTURE	MET LABS	N/A	11/22/2010	11/22/2011
Test Name: Volta	ge Dips and Short Interrupt	Test Date(s): 04/05/11			
MET Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date
1S2423	ULTRA COMPACT SIMLULATOR	EM TEST	UCS-500M-6A	SEE NOTE	
1S2490	GROUND PLANE 2	MET LABS	N/A	SEE NOTE	
Test Name: Surge	es Clause 9.8			Test	Date(s): 04/22/11
MET Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date
RENTAL	SURGE GENERATOR	THERMO SCIENTIFIC	EMC PRO PLUS GENERATOR	06/29/2010	06/29/2011
1S2604	OSCILLOSCOPE	TEKTRONIX	TDS7104	05/21/2010	05/21/2011
1S2490	GROUND PLANE 2	MET LABS	N/A	SEE NOTE	

Note: Functionally verified test equipment is verified using calibrated instrumentation at the time of testing.