

Radio Test Report

FCC Part 90 Subpart Z 3650 MHz to 3675 MHz

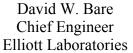
RSS 197

Model: NanoStationM365/NanoBridgeM365

COMPANY: Ubiquiti Networks

91 E. Tasman Drive San Jose, CA 95134

TEST SITE(S): Elliott Laboratories


41039 Boyce Road.

Fremont, CA. 94538-2435

REPORT DATE: April 4, 2011

FINAL TEST DATES: March 11, 14, 16, 17, 18, 21, 22 and 25, 2011

AUTHORIZED SIGNATORY:

Testing Cert #2016.01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

Test Report Report Date: April 4, 2011

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	04/04/2011	First release	

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS	
FCC PART 90Z – BASE AND FIXED STATIONS, 3650 – 3700 MHZ	6
EXTREME CONDITIONS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
OTHER EUT DETAILS	
ENCLOSURE	8
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TESTING	
GENERAL INFORMATION	
RF PORT MEASUREMENT PROCEDURES	
OUTPUT POWER	
BANDWIDTH MEASUREMENTS	
CONDUCTED SPURIOUS EMISSIONSTRANSMITTER MASK MEASUREMENTS	
FREQUENCY STABILITY	
TRANSIENT FREQUENCY BEHAVIOR:	13
RADIATED EMISSIONS MEASUREMENTS	
INSTRUMENTATION	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	15
SAMPLE CALCULATIONS	15
SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS	
SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH	16
SAMPLE CALCULATIONS -RADIATED POWER	17
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	18
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	19
APPENDIX B TEST DATA	
END OF REPORT	

SCOPE

Tests have been performed on the Ubiquiti Networks models NanoStationM365/NanoBridgeM365, pursuant to the relevant requirements of the following standard(s) in order to obtain device certification against the regulatory requirements of the Federal Communications Commission and Industry Canada.

- Code of Federal Regulations (CFR) Title 47 Part 2
- CFR 47 Part 90 (Private Land Mobile Radio Service) Subpart Z

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 ANSI TIA-603-C August 17, 2004

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Ubiquiti Networks models NanoStationM365/NanoBridgeM365 and therefore apply only to the tested samples. The samples were selected and prepared by Jennifer Sanchez of Ubiquiti Networks.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, the device requires certification. Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested samples of Ubiquiti Networks models NanoStationM365/NanoBridgeM365 complied with the requirements of the standards and frequency bands declared in the scope of this test report.

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS

FCC Part 90Z - Base and Fixed Stations, 3650 - 3700 MHz

FCC	Description	Measured	Limit	Result	
Transmitter Me	odulation, output power and	d other characteristics	•	•	
§2.1033 (c) (5) § 90.1321(b)	Frequency ranges (Listed for each channel spacing)	5MHz 3653-3697MI 10MHz 3655-3695MI 20MHz 3660-3690MI 25MHz 3662-3688MI	Hz 3650-3675 MHz Note Hz 1	Complies	
§2.1033 (c) (6) §2.1033 (c) (7)	EIRP – Total power (Maximum for each channel spacing)	5MHz: 35.8dBm 10MHz: 38.6dBm 20MHz: 41.5dBm 25MHz: 42.4dBm	25 Watts	Complies	
§2.1046 § 90.1321	EIRP – PSD (Maximum)	5MHz: 29.9dBm/MHz 10MHz: 29.9dBm/MH 20MHz: 29.9dBm/MH 25MHz: 29.9dBm/MH	z z 30 dBm/MHz	Complies	
§2.1033 (c) (4)	Emission types	D7D	Information only	-	
§2.1047 § 90.210	Emission mask	Device complies with spectral mask – refer to t data		Complies	
§2.1049	Occupied (99%) Bandwidth	5MHz: 4.2 MHz 10MHz: 8.5 MHz 20MHz: 16.8 MHz 25MHz: 20.9 MHz		-	
Transmitter sp	urious emissions		•	•	
\$2.1051 \$2.1057	At the antenna terminals	-16.0 dBm	-13 dBm/MHz	Complies	
§90.1323	Radiated (eirp)	-38.0 dBm	TS UBIN IVIII	Complies	
Receiver spurio	ous emissions		·		
15.109	Field strength	Not applicable, note 2			
Other details					
§90.1319	Policies of use	Refer to operational description for details of the implementation.	Device must employ a contention-based protocol.	Complies	
§2.1055 §90.213(a)	Frequency stability	7.5 ppm	To be specified in the station authorization	-	
§1.1307(b) §2.1093 §90.1335	Although RF exposure compliance is addressed at the time of licensing an MPE calculation has been provided to demonstrate compliance with limits at distances of 22cm or more from the				
§2.1033 (c) (8)	Final radio frequency amplifying circuit's dc voltages and currents for normal operation over the power range	4.5V, 300mA	Information only	-	
- Antenna Gain This application is submitted for antennas of 13 and 21 dBi gain.				21 dBi	

Notes

¹⁾ The upper part of the allocated band from 3675 - 3700 MHz requires the device to use an unrestricted contention-based protocol. This system does not have such a protocol and so cannot use the upper portion of the band.

EXTREME CONDITIONS

Frequency stability is determined over extremes of temperature and voltage. The extremes of voltage were 85 to 115 percent of the nominal value.

The extremes of temperature were -30°C to +50°C as specified in FCC §2.1055(a)(1).

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) and were calculated in accordance with NAMAS document NIS 81 and M3003.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF frequency	Hz	25 to 7,000 MHz	1.7×10^{-7}
RF power, conducted	dBm	25 to 7,000 MHz	± 0.52 dB
Conducted emission of transmitter	dBm	25 to 40,000 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 40,000 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 40,000 MHz	± 2.5 dB
Radiated emission (field strength)	dBμV/m	25 to 1,000 MHz 1 to 40 GHz	± 3.6 dB ± 6.0 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Ubiquiti Networks models NanoStationM365/NanoBridgeM365 are 3.65GHz CPE. Since the EUT would be pole-mounted during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 24V/0.5A POE.

The sample was received on March 5, 2011 and tested on March 11, 14, 16, 17, 18, 21, 22 and 25, 2011. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Ubiquiti	NanoStation	3.65GHz CPE	None	SWX-M365
Networks	M365 /			
	NanoBridge			
	M365			
Ubiquiti	UBI-POE-24-1	PoE injector	None	None
Networks		•		

OTHER EUT DETAILS

The following EUT details should be noted: The NanoBridge M365 is identical to the NanoStation M365 except it employs a dish antenna reflector which increases the antenna gain to 21 dBi instead of 13dBi.

The antenna is integral to the device.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 45 cm wide by 42 cm deep by 3.5 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

No local support equipment was used during testing.

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
HP	G42	Laptop	-	•

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected	Cable(s)		
Polt	To	Description	Shielded or Unshielded	Length(m)
Ethernet	PoE injector	Cat 5	Unshielded	1
Ethernet (PoE injector)	Laptop	Cat 5	Unshielded	10
AC Power (PoE injector)	AC Mains	3 wire	Unshielded	0.5

EUT OPERATION

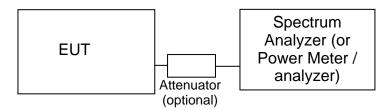
During emissions testing the EUT was transmitting at various frequencies, bandwidths & data rates.

TESTING

GENERAL INFORMATION

Antenna port measurements were taken at the Elliott Laboratories test site located at 41039 Boyce Road, Fremont, CA 94538-2435.

Radiated spurious emissions measurements were taken at the Elliott Laboratories Anechoic Chambers and/or Open Area Test Site(s) listed below. The sites conform to the requirements of ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz and CISPR 16-1-4:2007 - Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances. They are on file with the FCC and industry Canada.


Site	Registration Numbers		Location	
Site	FCC	Canada	Location	
Chamber 4	211948	IC 2845B-4	41039 Boyce Road	
Chamber 7	A2LA Accredited	IC 2845B-7	Fremont, CA 94538-2435	

In the case of Open Area Test Sites, ambient levels are at least 6 dB below the specification limits with the exception of predictable local TV, radio, and mobile communications traffic.

Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements.

RF PORT MEASUREMENT PROCEDURES

Conducted measurements are performed with the EUT's rf input/output connected to the input of a spectrum analyzer, power meter or modulation analyzer. When required an attenuator, filter and/or dc block is placed between the EUT and the spectrum analyzer to avoid overloading the front end of the measurement device. Measurements are corrected for the insertion loss of the attenuators and cables inserted between the rf port of the EUT and the measurement equipment.

Test Configuration for Antenna Port Measurements

For devices with an integral antenna the output power and spurious emissions are measured as a field strength at a test distance of (typically) 3m and then converted to an eirp using a substitution measurement (refer to RADIATED EMISSIONS MEASUREMENTS). All other measurements are made as detailed below but with the test equipment connected to a measurement antenna directed at the EUT.

OUTPUT POWER

Output power is measured using a power meter and an average sensor head, a spectrum analyzer or a power meter and peak power sensor head as required by the relevant rule part(s). Where necessary measurements are gated to ensure power is only measured over periods that the device is transmitting.

Power measurements made directly on the rf power port are, when appropriate, converted to an EIRP by adding the gain of the highest gain antenna that can be used with the device under test, as specified by the manufacturer.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN. The measurement bandwidth is set to be at least 1% of the instrument's frequency span.

CONDUCTED SPURIOUS EMISSIONS

Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode measurements). Where the limits are expressed as an average power the spectrum analyzer is tunes to that frequency with a narrow span (wide enough to capture the emission and its sidebands) and the resolution and video bandwidths are adjusted as required by the reference measurement standards. For transmitter measurements the appropriate detector (average, peak, normal ,sample, quasi-peak) is used when making measurements for licensed devices. For receiver conducted spurious measurements the detector is set to peak.

TRANSMITTER MASK MEASUREMENTS

The transmitter mask measurements are made using resolution bandwidths as specified in the pertinent rule part(s). Where narrower bandwidths are used the measurement is corrected to account for the reduced bandwidth by either using the adjacent channel power function of the spectrum analyzer to sum the power across the required measurement bandwidth. The frequency span of the analyzer is set to ensure the fundamental signal and all significant sidebands are displayed.

The top of the mask may be set by the total output power of the signal, the power of the unmodulated signal or the peak value of the signal in the reference bandwidth being used for the mask measurement.

FREQUENCY STABILITY

The EUT is placed inside a temperature chamber with all support and test equipment located outside of the chamber. The temperature is varied across the specified frequency range in 10 degree increments with frequency measurements made at each temperature step. The EUT is allowed enough time to stabilize at each temperature variation.

The spectrum analyzer is configured to give a 5- or 6-digit display for the marker-frequency function. The spectrum analyzer's built-in frequency counter is used to measure the maximum deviation of the fundamental frequency at each temperature. Where possible the device is set to transmit an unmodulated signal. Where this is not possible the frequency drift is determined by finding a stable point on the signal (e.g. the null at the centre of an OFDM signal) or by calculating a centre frequency based on the upper and lower XdB points (where X is typically 6dB or 10dB) on the signal's skirts.

TRANSIENT FREQUENCY BEHAVIOR:

The TIA/EIA 603 procedure is used to determine compliance with transient frequency timing requirements as the radio is keyed on and off.

The EUTs rf output is connected via a combiner/splitter to the test receiver/spectrum analyzer and to a diode detector. The test receiver or spectrum analyzer video output is connected to an oscilloscope, which is triggered by the output from the diode detector.

Plots showing Ton, T1, and T2 are made when turning on the transmitter and showing T3 when turning off the transmitter.

RADIATED EMISSIONS MEASUREMENTS

Receiver radiated spurious emissions measurements are made in accordance with ANSI ANSI C63.4:2003 by measuring the field strength of the emissions from the device at a specific test distance and comparing them to a field strength limit. Where the field strength limit is specified at a longer distance than the measurement distance the measurement is extrapolated to the limit distance.

Transmitter radiated spurious emissions are initially measured as a field strength. The eirp or erp limit as specified in the relevant rule part(s) is converted to a field strength at the test distance and the emissions from the EUT are then compared to that limit. Emissions within 20dB of this limit are the subjected to a substitution measurement.

All radiated emissions measurements are performed in two phases. A preliminary scan of emissions is conducted in either an anechoic chamber or on an OATS during which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed across the complete frequency range of interest and at each operating frequency identified in the reference standard. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode).

During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. For transmitter spurious emissions, where the limit is expressed as an effective radiated power, the eirp or erp is converted to a field strength limit.

Final measurements are made on an OATS or in a semi-anechoic chamber at the significant frequencies observed during the preliminary scan(s) using the same process of rotating the EUT and raising/lowering the measurement antenna to find the highest level of the emission. The field strength is recorded and, for receiver spurious emissions, compared to the field strength limit. For the final measurement the appropriate detectors (average, peak, normal, sample, quasi-peak) are used. For receiver measurements below 1GHz the detector is a Quasi-Peak detector, above 1GHz a peak detector is used and the peak value (RB=VB=1MHz) and average value (RB=1MHz, VB=10Hz) are recorded.

For transmitter spurious emissions, the radiated power of all emissions within 20dB of the calculated field strength limit are determined using a substitution measurement. The substitution measurement is made by replacing the EUT with an antenna of known gain (typically a dipole antenna or a double-ridged horn antenna), connected to a signal source. The output power of the signal generator is adjusted until the maximum field strength from the substitution antenna is similar to the field strength recorded from the EUT. The erp of the EUT is then calculated.

INSTRUMENTATION

An EMI receiver as specified in CISPR 16-1-1 is used for radiated emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary.

For measurements above the frequency range of the receivers and for all conducted measurements a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis.

Measurement bandwidths for the test instruments are set in accordance with the requirements of the standards referenced in this document.

Software control is used to correct the measurements for transducer factors (e.g. antenna) and the insertion loss of cables, attenuators and other series elements to obtain the final measurement value. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are exported in a graphic and/or tabular format, as appropriate.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the EUT antenna port or receiving antenna and the test receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A combination of biconical, log periodic or bi-log antennas are used to cover the range from 30 MHz to 1000 MHz. Broadband antennas or tuned dipole antennas are used over the entire 25 to 1000 MHz frequency range as the reference antenna for substitution measurements.

Above 1000 MHz, a dual-ridge guide horn antenna or octave horn antenna are used as reference and measurement antennas.

The antenna calibration factors are included in site factors that are programmed into the test receivers and instrument control software when measuring the radiated field strength.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

Table mounted devices are placed on a non-conductive table at a height of 80 centimeters above the floor. Floor mounted equipment is placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. The EUT is positioned on a motorized turntable to allow it to be rotated during testing to determine the angel with the highest level of emissions.

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS

Measurements are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

$$R_r - S = M$$

where:

 R_r = Measured value in dBm

S = Specification Limit in dBm

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH

Measurements of radiated field strength are compared directly to the specification limit (decibel form). The receiver and/or control software corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor is sued when measurements are made at a test distance that is different to the specified limit distance by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - RADIATED POWER

The erp/eirp limits for transmitter spurious measurements are converted to a field strength in free space using the following formula:

$$E = \frac{\sqrt{30 PG}}{d}$$

where:

E = Field Strength in V/m

P = Power in Watts

G = Gain of isotropic antenna (numeric gain) = 1

D = measurement distance in meters

The field strength limit is then converted to decibel form (dBuV/m) and the margin of a given emission peak relative to the limit is calculated (refer to *SAMPLE CALCULATIONS –RADIATED FIELD STRENGTH*).

When substitution measurements are required (all signals with less than 20dB of margin relative to the calculated field strength limit) the eirp of the spurious emission is calculated using:

$$P_{EUT} = P_{S-(E_{S}-E_{EUT})}$$

$$P_S = G + P_{in}$$

where:

and

 P_S = effective isotropic radiated power of the substitution antenna (dBm)

 P_{in} = power input to the substitution antenna (dBm)

G = gain of the substitution antenna (dBi)

 E_S = field strength the substitution antenna (dBm) at eirp P_S

 E_{EUT} = field strength measured from the EUT

Where necessary the effective isotropic radiated power is converted to effective radiated power by subtracting the gain of a dipole (2.2dBi) from the eirp value.

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz - 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

Appendix A Test Equipment Calibration Data

Radiated Emissions, 30 - 2,000 MHz, 05-Mar-11					
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due	
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	11/2/2011	
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	6/22/2012	
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103	1632	4/23/2011	
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40)	8564E (84125C)	1771	8/26/2011	
	Purple				
Hewlett Packard	Microwave Preamplifier, 1-	8449B	1780	11/23/2011	
	26.5GHz				
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	2197	12/29/2011	
Conducted Emissions	AC Dower Borto OF May 11				
	- AC Power Ports, 05-Mar-11	Madal	A	Cal Dua	
Manufacturer	Description	Model	Asset #	Cal Due	
EMCO	LISN, 10 kHz-100 MHz	3825/2	1293	3/12/2011	
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	11/2/2011	
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	1594	5/27/2011	
Radio Antenna Port (P	Power and Spurious Emissions), ()8-Mar-11			
Manufacturer	Description	Model	Asset #	Cal Due	
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV	8564E (84125C)	1148	7/12/2011	
riomott achara	(SA40) Red	00012 (011200)		.,.2,20	
	(8/110) 1184				
Radiated Emissions, F	Rx mode, 30 - 11,000 MHz, 16-Mar-	·11			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due	
Hewlett Packard	Microwave Preamplifier, 1-	8449B	263	12/8/2011	
	26.5GHz				
EMCO	Antenna, Horn, 1-18 GHz	3115	487	7/6/2012	
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT	8564E (84125C)	1393	4/14/2011	
	(SA40) Blue				
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	11/2/2011	
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103	1632	4/23/2011	
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	2197	12/29/2011	
Daille Automa Dant	10 May 44				
Radio Antenna Port,		BA1-1	A 4 #	0-1-0	
<u>Manufacturer</u>	<u>Description</u>	Model	Asset #	Cal Due	
Agilent	PSA, Spectrum Analyzer,	E4446A	2139	1/26/2012	
	(installed options, 111, 115, 123,				
	1DS, B7J, HYX,				
Radiated Emissions 3	80 - 18,000 MHz, 22-Mar-11				
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due	
Hewlett Packard	Microwave Preamplifier, 1-	8449B	785	5/26/2011	
riomott r donard	26.5GHz	0.1.02	. 00	0/20/2011	
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz -	8593EM	1319	11/22/2011	
riomon raonara	22 GHz	00002111	1010	,,	
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT	8564E (84125C)	1393	4/14/2011	
	(SA40) Blue	(011200)	.000		
Sunol Sciences		IDO	4540	6/24/2012	
	BICONIIOO, 30-3000 MHZ	JB3	1548	0/24/2017	
EMCO	Biconilog, 30-3000 MHz Antenna, Horn, 1-18 GHz	JB3 3115	1548 1561		
EMCO Com-Power Corp.	Antenna, Horn, 1-18 GHz Preamplifier, 30-1000 MHz	3115 PA-103A	1548 1561 2359	6/22/2012 6/22/2012 2/15/2012	

Radiated Emissions, 30 - 37,000 MHz, 22-Mar-11				
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-	8449B	263	12/8/2011
EM00	26.5GHz	0445	4440	0/0/0040
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/2/2012
Hewlett Packard	Head (Inc flex cable, 1143, 2198)	84125C	1145	2/17/2012
He lett Deel and	Red	05045 (044050)	4440	7/40/0044
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	7/12/2011
Hewlett Packard	ÈMC Śpectrum Analyzer, 9 KHz -	8593EM	1319	11/22/2011
	22 GHz			
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1548	6/24/2012
A.H. Systems	Purple System Horn, 18-40GHz	SAS-574, p/n: 2581	2160	5/7/2011
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103A	2359	2/15/2012
Frequency Stability, P	art 90 & RSS 197, 25-Mar-11			
Manufacturer	Description	Model	Asset #	Cal Due
Fluke Mfg. Inc.	Mulitmeter, True RMS	175	1447	7/8/2011
Agilent	PSA, Spectrum Analyzer,	E4446A	2139	1/26/2012
3 -	(installed options, 111, 115, 123, 1DS, B7J, HYX,			
Thermotron	Temp Chamber (w/ F4 Watlow	S1.2	2170	7/1/2011
	Controller)	•		.,.,_0

Appendix B Test Data

Elliott	EMC Test Data
Client: Ubiquiti Networks	Job Number: J82268
Model: NanoBridgeM365 & NanoStationM365	T-Log Number: T82413
	Account Manager: Susan Pelzl
Contact: Jennifer Sanchez	-
Emissions Standard(s): FCC 15B, 90Z, RSS	Class: -
Immunity Standard(s): -	Environment: -

EMC Test Data

For The

Ubiquiti Networks

Model

NanoBridgeM365 & NanoStationM365

Date of Last Test: 3/25/2011

	Elliott An WAS company	EMC Test Data			
Client:	Ubiquiti Networks	Job Number:	J82268		
Model	NanoPridgoM265 & NanoStationM265	T-Log Number:	T82413		
Model.	NanoBridgeM365 & NanoStationM365	Account Manager:	Susan Pelzl		
Contact:	Jennifer Sanchez				
Standard:	FCC 15B, 90Z, RSS	Class:	N/A		

RSS 197 and FCC Part 90 **Spurious Emissions**

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 3/21/2011 Config. Used: 1 Config Change: None Test Engineer: Rafael Varelas Test Location: Chamber #7 EUT Voltage: POE

General Test Configuration

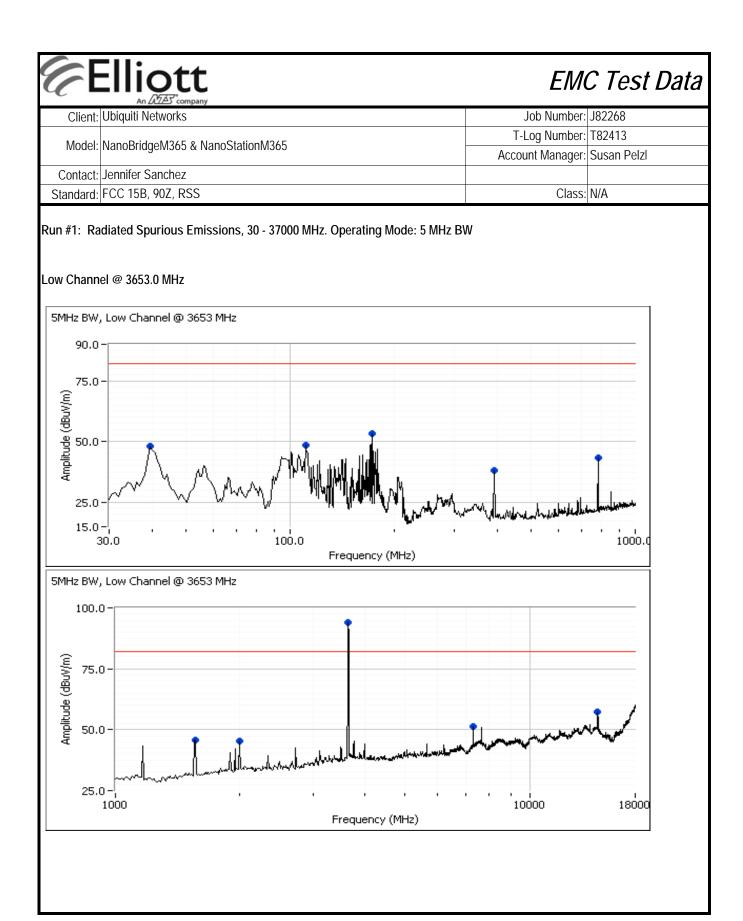
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located outside the chamber.

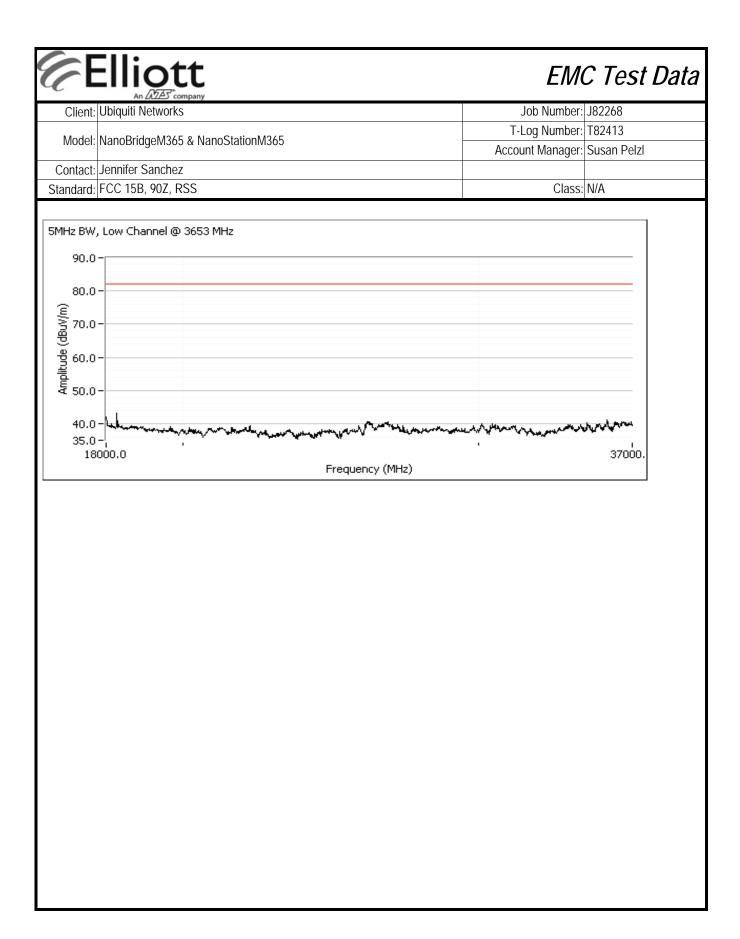
For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

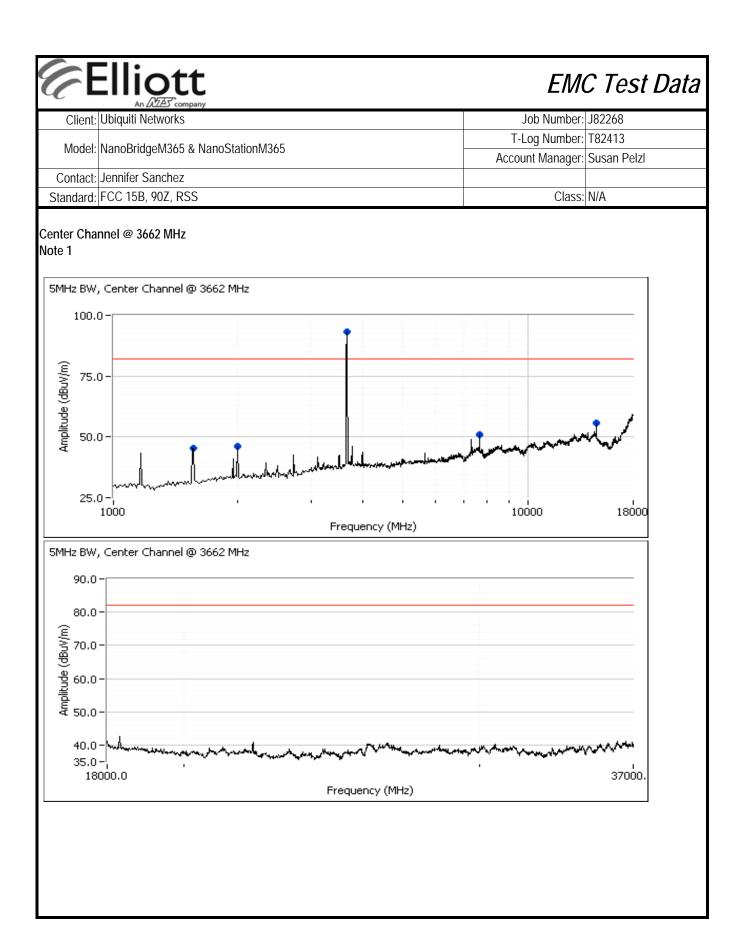
Ambient Conditions: Temperature: 20-25 °C

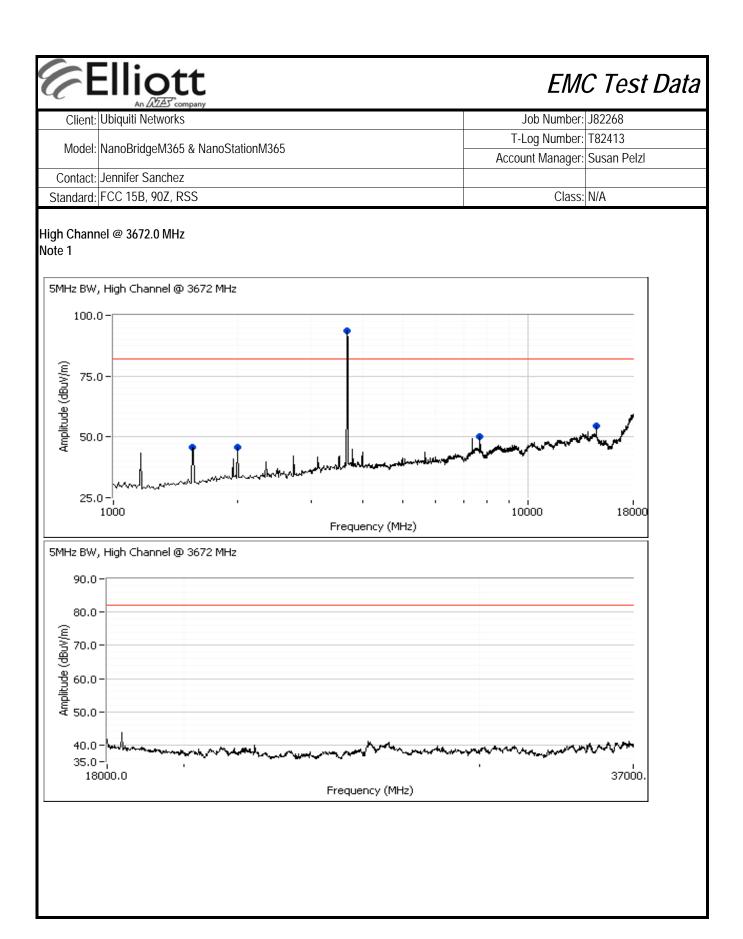
> Rel. Humidity: 30-40 %

Summary of Results

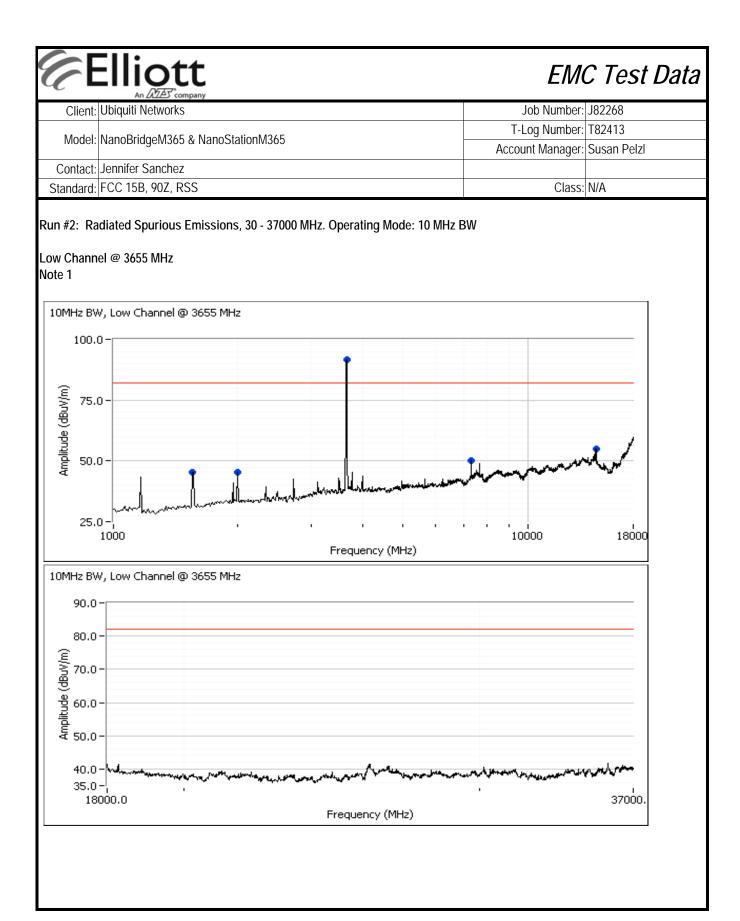

Run #	Mode	Channel	BW	Test Performed	Limit	Result / Margin
-	Data Rate MCS 0	All	All	Radiated Emissions, 30 MHz-37GHz	FCC 90.210 Mask B	All emissions are more than 20dB below the limit

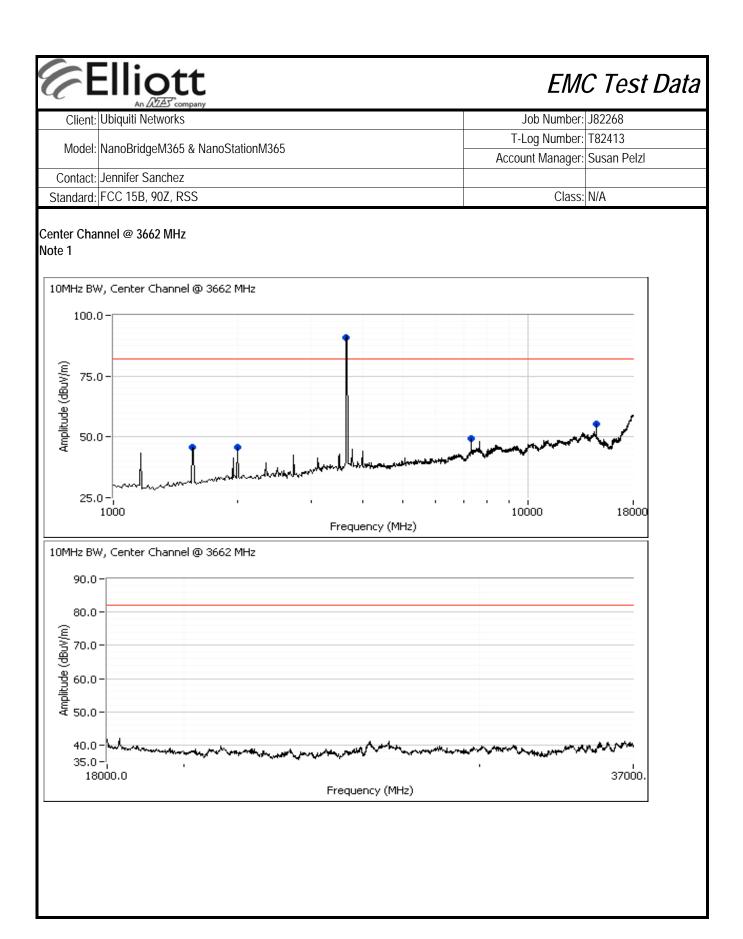

Modifications Made During Testing

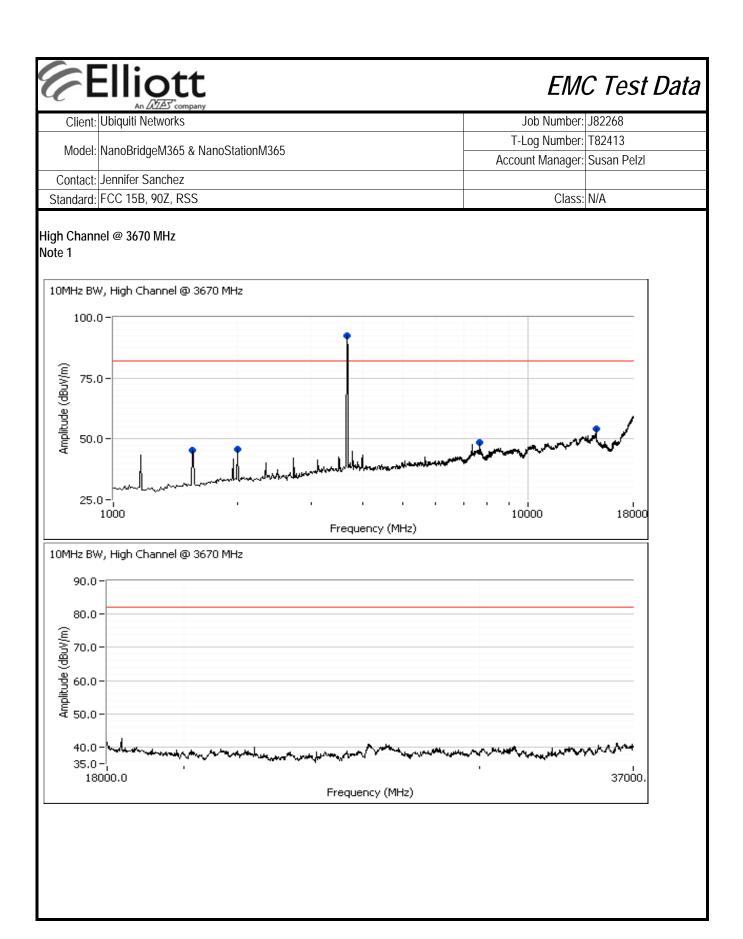

No modifications were made to the EUT during testing

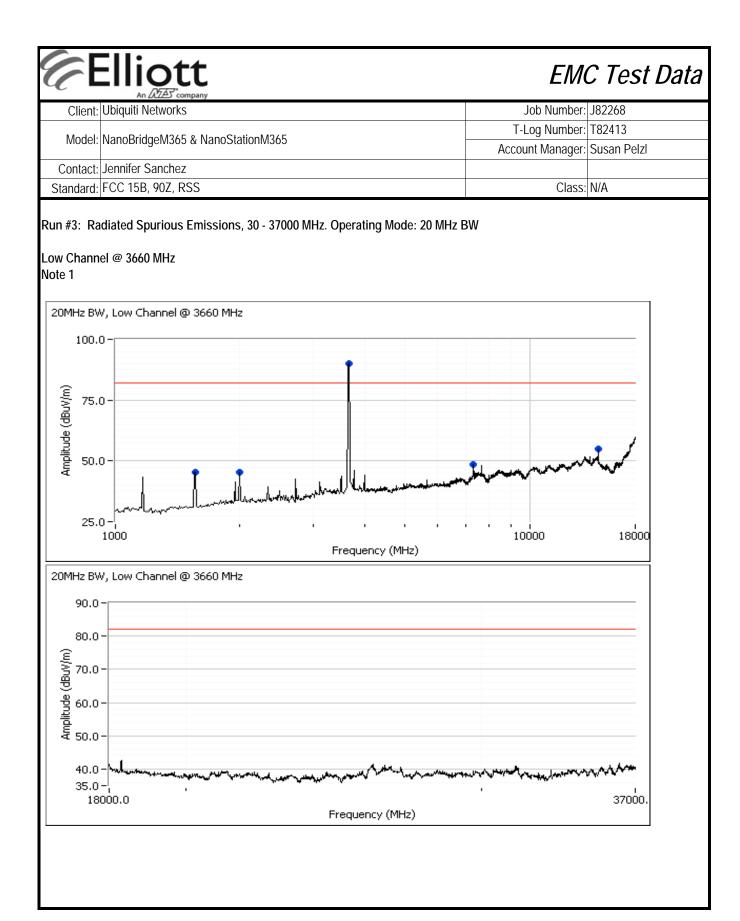

Deviations From The Standard

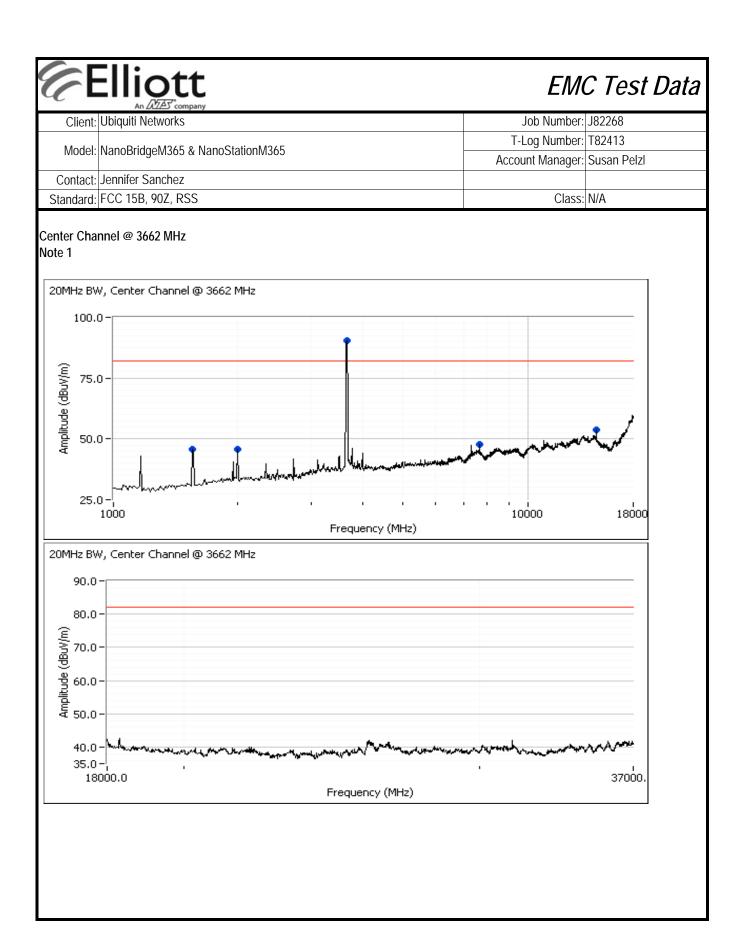
No deviations were made from the requirements of the standard.

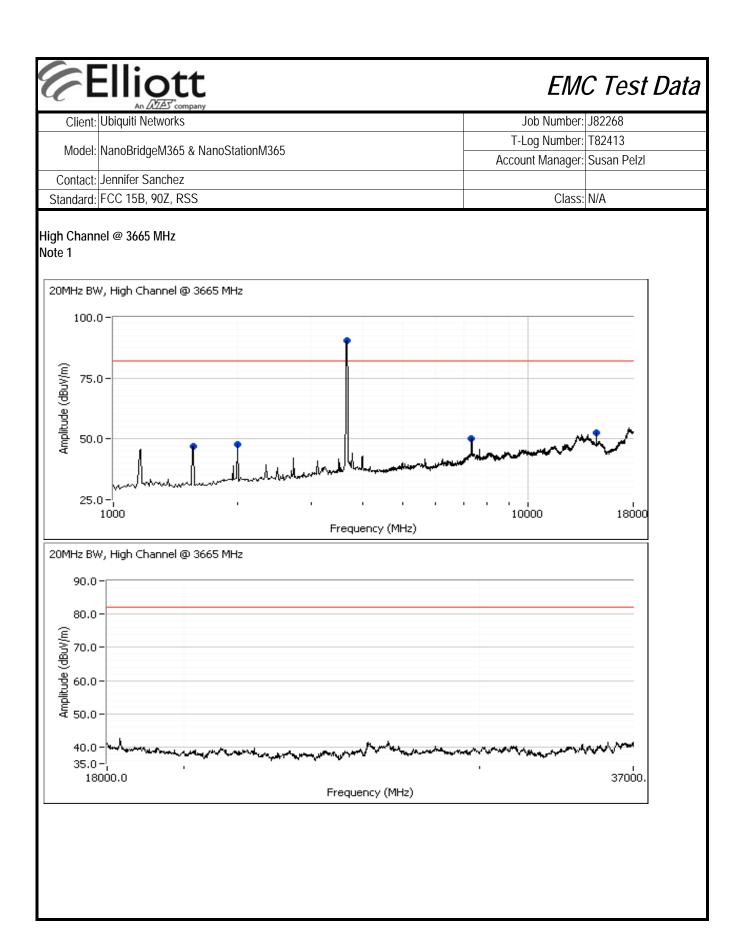




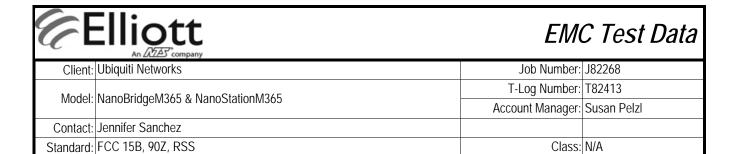


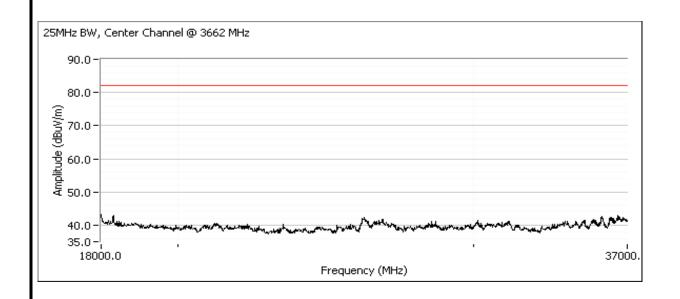

	NanoBridgeN				Ubiquiti Networks								
		1265 P. Nan	oStationM24	T-Log Number: T82413									
	ranobnagon	וומטו א כטכוי	เบรเลแบกเพรเ	Account Manager: Susan Pelzl									
Contact	Jennifer Sand	chez											
Standard	FCC 15B, 90	Z, RSS						Class: N/A					
F	11	D.1	F00	11.2.1.1	Io	01							
Frequency	Level	Pol	1	90.210	Detector	Azimuth	Height	Comments	Channe				
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		3653				
39.450	48.0	<u> </u>	82.2	-34.2	Peak	<i>105</i>	1.0		<i>3653</i>				
111.000	48.7	<u> </u>	82.2	-33.5	Peak	330	2.0		3653				
173.775	53.4	V	82.2	-28.8	Peak	140	4.0		3653				
391.000	38.0	<u> </u>	82.2	-44.2	Peak	60	1.0		3653				
781.250	43.3	H	82.2	-38.9	Peak	4	1.5		3653				
1559.170	45.8	H	82.2	-36.4	Peak	346	1.0		3653				
1990.000	45.4	H	82.2	-36.8	Peak	209	1.6	For dominatel	<i>3653</i>				
3653.000	94.0	<u>Н</u> Н	- 00.0	- 20.0	Peak	184	1.3	Fundamental	3653				
7305.000	<i>51.3</i> 57.2		<i>82.2</i> 82.2	-30.9	Peak	<i>315</i> 329	1.0 1.3		<i>3653</i>				
14613.330	57.2	V	82.2	-25.0	Peak	329	1.3		3653				
1559.170	45.3	Н	82.2	-36.9	Peak	329	1.0		3662				
1990.000	46.1	Н	82.2	-36.1	Peak	230	1.3		3662				
3662.000	93.3	Н	-	_	Peak	191	1.0	Fundamental	3662				
7660.830	50.8	V	82.2	-31.4	Peak	347	1.9		3662				
14653.330	55.7	V	82.2	-26.5	Peak	19	1.3		3662				
1550.000	45.6	.,,	22.2	24.4	5 /	0.45			0.770				
1550.000	45.8	<u> </u>	82.2	-36.4	Peak	<i>345</i>	1.0		3672				
1990.000	45.6	Н	82.2	-36.6	Peak	173	1.0		3672				
3672.000	93.5	Н	-	-	Peak	195	1.3	Fundamental	3672				
	50.2	V 	<i>82.2</i> <i>82.2</i>	-32.0 -27.7	Peak Peak	350 11	1.0 1.3		3672 3672				
7672.500 14693.330	54.5			') / /	$D \cap 2V$	77	7.7		26 / 2				






Cilent:	Ubiquiti Netw	orks		Job Number: J82268					
				T-Log Number: T82413					
Model:	NanoBridgeN	1365 & Nan	oStationM36	Account Manager: Susan Pelzl					
Contact:	Jennifer Sand	chez			gg				
	FCC 15B, 90				Class: N/A				
Stariuaru.	1 CC 13D, 70.	Z, 1133						Class. IVA	
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	Channe
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1550.000	45.3	Н	82.2	-36.9	Peak	335	1.0		3655
1990.000	45.4	Н	82.2	-36.8	Peak	218	1.3		<i>3565</i>
3655.000	91.5	Н	-	-	Peak	185	1.0	Fundamental	<i>3655</i>
7310.830	50.3	Н	82.2	-31.9	Peak	308	1.0		<i>3655</i>
4626.670	55.0	V	82.2	-27.2	Peak	326	1.6		3565
1550.000	45.8	Н	82.2	-36.4	Peak	347	1.0		3662
1990.000	45.6	Н	82.2	-36.6	Peak	177	1.0		3662
3662.000	90.7	Н	-	-	Peak	187	1.3	Fundamental	3662
7322.500	49.3	Н	82.2	-32.9	Peak	297	1.0		3662
4653.330	55.5	V	82.2	-26.7	Peak	19	1.3		3662
1550.000	45.4	Н	82.2	-36.8	Peak	342	1.0		3670
1990.000	45.9	Н	82.2	-36.3	Peak	206	1.3		3670
3670.000	92.4	Н	-	_	Peak	180	1.3	Fundamental	3670
7666.670	48.5	V	82.2	-33.7	Peak	348	1.9		3670
4680.000	54.0	V	82.2	-28.2	Peak	354	1.3		3670





Client:	Ubiquiti Netw	orks		Job Number: J82268					
				T-Log Number: T82413					
Model:	NanoBridgeN	1365 & Nan	oStationM36	Account Manager: Susan Pelzl					
Contact	Jennifer Sand	hez		71000	ant managen easti				
	FCC 15B, 90				Class: N/A				
Statiuatu.	1 CC 13D, 70.	L, N33						Class. IV/A	
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	Channe
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1559.170	45.3	Н	82.2	-36.9	Peak	348	1.0		3660
1999.170	45.3	Н	82.2	-36.9	Peak	216	1.3		3660
3660.000	90.0	Н	-	-	Peak	188	1.0	Fundamental	3660
7328.330	48.4	Н	82.2	-33.8	Peak	296	1.3		3660
4653.330	55.0	V	82.2	-27.2	Peak	355	1.9		3660
1550.000	45.6	Н	82.2	-36.6	Peak	353	1.0		3662
1990.000	45.6	Н	82.2	-36.6	Peak	204	1.3		3662
3662.000	90.5	Н	-	-	Peak	182	1.3	Fundamental	3662
7660.830	47.7	V	82.2	-34.5	Peak	354	1.9		3662
4640.000	53.9	V	82.2	-28.3	Peak	18	1.3		3662
1559.170	46.8	Н	82.2	-35.4	Peak	349	1.0		3665
1999.170	47.6	Н	82.2	-34.6	Peak	42	1.3		3665
3665.000	90.6	Н	-	-	Peak	190	1.3	Fundamental	3665
7328.330	50.3	Н	82.2	-31.9	Peak	309	1.0		3665
4666.670	52.4	V	82.2	-29.8	Peak	15	1.3		3665

Frequency	Level	Pol	15 200	/ 15.247	Detector	Azimuth	Height	Comments
		_						Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
39.450	46.1	V	82.2	-36.1	Peak	92	1.0	
96.150	44.0	V	82.2	-38.2	Peak	37	1.0	
171.750	38.8	Н	82.2	-43.4	Peak	147	2.5	
354.250	40.5	V	82.2	-41.7	Peak	100	1.0	
781.250	43.4	Н	82.2	-38.8	Peak	11	1.5	
1559.170	46.0	Н	82.2	-36.2	Peak	344	1.0	
1999.170	45.5	Н	82.2	-36.7	Peak	214	1.3	
3662.000	89.7	Н	-		Peak	185	1.3	Fundamental
7322.500	49.8	Н	82.2	-32.4	Peak	316	1.0	
14640.000	51.6	V	82.2	-30.6	Peak	18	1.3	

Client	Ubiquiti Netv	AS company						Job Number:	182268	
Client.	Obiquiti Neti	WOIKS						Log Number:		
Model:	NanoBridgel	M365 & Nan	oStationM36	5			Account Manager: Susan Pelzl			
Contact	Jennifer Sar	nchoz					ACCUI	uni ivianayer.	Susaii F Cizi	
	FCC 15B, 90							Class:	NI/A	
Stariuaru:	FCC 13B, 90	JZ, KSS						Class.	IV/A	
Run #5: Ra	diated Spur	rious Emissi	ions, Transr	mit Mode: Si	ubstitution N	Measuremen	ts			
Frequency	Level	Pol	FCC 9	90.210	Detector	Azimuth	Height	Comments		Channel
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
14613.330	57.2	V	82.2	-25.0	Peak	329	1.3			3653
Horizontal a	& Vertical									
Frequency		ution measur	ements	Site	EU	T measurem	ents	eirp Limit	erp Limit	Margin
MHz	Pin ¹	Gain ²	FS^3	Factor ⁴	FS ⁵	eirp (dBm)	erp (dBm)	dBm	dBm	dB
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
All signals		than 20dB be	elow the com		nit					
		out power (di								
Note 2:					A dipole has		dBi.			
					the substitution					
					a field strengt	h in dBuV/m	to an eirp in	dBm.		
Note 5:	EUT field str	ength as me	asured durin	ıg initial run.						

	Elliott An AZAS company	EMO	C Test Data
Client:	Ubiquiti Networks	Job Number:	J82268
Madali	NanoBridgeM365 & NanoStationM365	T-Log Number:	T82413
wouei.	INAHOBITUYEWISOS & INAHOSTATIOHIWISOS	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15B, 90Z, RSS	Class:	N/A

RSS-197 and FCC 90Z - Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
2	Power, NanoStation	Part 90	Pass	5 MHz: 35.0dBm 10 MHz: 34.9dBm 20 MHz: 37.4dBm 25 MHz: 36.5dBm
2	PSD, NanoStation	1 Watt/MHz 90.1321(a)	Pass	5 MHz: 29.1dBm/MHz 10 MHz: 26.4dBm/MHz 20 MHz: 26.0dBm/MHz 25 MHz: 24.1dBm/MHz
2	99% Bandwidth	-	N/A	5 MHz: 4.2 MHz 10 MHz: 8.5 MHz 20 MHz: 16.8 MHz 25 MHz: 21.1 MHz
3	Power, NanoBridge	Part 90	Pass	5 MHz: 35.8dBm 10 MHz: 38.6dBm 20 MHz: 41.5dBm 25 MHz: 42.4dBm
3	PSD, NanoBridge	1 Watt/MHz 90.1321(a)	Pass	5 MHz: 29.9dBm/MHz 10 MHz: 29.9dBm/MHz 20 MHz: 29.9dBm/MHz 25 MHz: 29.9dBm/MHz
4	Mask and Antenna Conducted Out of Band Spurious	Within Mask and -13dBm/MHz out of	Pass	All emissions below the Mask and -13dBm/MHz limit

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port(s) of the EUT were connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Test Notes

The NanoStation and NanoBridge are the same radio but the NanoBridge uses a reflector for the antenna to increase gain to 21 dBi from the integrated 13dBi Patch antenna.

Client:	Ubiquiti Net	works						Job Number:	J82268	
Madal	NonoDridgo	MO/F 0 None	CtationN12/	г			T-Log Number: T82413			
Model:	wanoBriage	M365 & Nand	ostationivi36	5			Accou	unt Manager:	Susan Pelzl	
Contact:	Jennifer Sa	nchez								
Standard:	FCC 15B, 9	0Z, RSS						Class:	N/A	
Deviation No deviati Run #1: Ou Te Te Power Frequency	s From TI ons were ma tput Power Date of Test: st Engineer: est Location: Software	Rafael Varel	requirements Spectral Den las Measure	s of the stand	Systems CO E Wer ² dBm		none POE tal ⁵	Limit (dBm)	Max Power	Pass or Fa
(MHz) 5 MHz Mod	Setting ¹		Chain 1	Chain 2	Chain 3	mW	dBm	, ,	(W)	
3662	20	MCS0	13.3	15.6		57.7	17.6	_		_
3662	20	MCS4	13.1	15.3		54.3	17.3	-	-	-
3662	20	MCS7	13.2	15.4		55.6	17.4	-		-
PSD										
Frequency	99% ⁴		Р	SD ³ dBm/Ml		Total	PSD ⁵	Liı	mit	<u> </u>
(MHz)	BW	Modulation	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz			Pass or Fa
5 MHz Mod	е	•		•	•	•		•	•	•
	-	MCS0	7.3	9.6		14.5	11.6	-	-	-
3662	-	MCS4	7.2	9.4		14.0	11.4	-	-	-
3662 3662		MCS7	7.1	9.3		13.6	11.3	-	-	-
	-									
3662 3662	Power settir	ng is the softw	vare setting i	ised to set th	ne autaut nav	ver				

For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains (in

Based on above results, Power and PSD for all types of modulations.MCS 0 had highest PSD and Power values. Higher Note 6: MCS values had lower PSD and Power values and thus all other BW mode testing was performed using the lowest MCS

Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB

Note 5:

value.

	Eliott An MZES company	EM	C Test Data
Client:	Ubiquiti Networks	Job Number:	J82268
Model	NanoBridgeM365 & NanoStationM365	T-Log Number:	T82413
woden.	ivanobriugewisos a ivanostationivisos	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15B, 90Z, RSS	Class:	N/A

Run #2: Bandwidth, Output Power and Power Spectral Density - MIMO Systems

Limits from 90.321(a): Base and fixed stations are limited to 25 watts/25 MHz equivalent isotropically radiated power (EIRP). In any event, the peak EIRP power density shall not exceed 1 Watt in any one-megahertz slice of spectrum (30dBm/MHz).

1						ı	-	1		1
			Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵	EIRP (mW)	EIRP (dBm)	
	Antenna	a Gain (dBi):	13	13		Yes	16.0	5523.0	37.4	
Power - Lin	nit accounts	for maximu	m antenna 🤉	gain at this p	ower settin	g.				
Frequency	Software	Modulation	Measure	d Output Pov	wer ² dBm	To	otal	EIRP	Limit (eirp)	Pass or Fail
(MHz)	Setting ¹	Modulation	Chain 1	Chain 2	Chain 3	mW	dBm	dBm	dBm	rass ui raii
5 MHz Mod	e									
3653	30, 27	MCS 0	15.3	16.1		74.6	18.7	34.7	44.0	PASS
3662	30, 27	MCS 0	15.4	15.7		71.8	18.6	34.6	44.0	PASS
3672	32, 28	MCS 0	15.9	16.1		79.5	19.0	35.0	44.0	PASS
10 MHz Mo	de									
3655	29, 26	MCS 0	15.0	15.6		67.9	18.3	34.3	44.0	PASS
3662	31, 27	MCS 0	15.9	15.8		76.9	18.9	34.9	44.0	PASS
3670	32, 27	MCS 0	16.0	15.8		78.0	18.9	34.9	44.0	PASS
20 MHz Mo	de									
3660	36, 31	MCS 0	17.1	17.7		110.7	20.4	36.5	44.0	PASS
3662	36, 31	MCS 0	17.4	17.6		112.5	20.5	36.5	44.0	PASS
3665	38, 34	MCS 0	18.3	18.5		138.4	21.4	37.4	44.0	PASS
25 MHz Mo	de									·
3662	36, 33	MCS 0	17.0	17.9		112.7	20.5	36.5	44.0	PASS

Client [.]	Ubiquiti Net	Company						Job Number:	J82268		
								og Number:			
Model:	NanoBridge	eM365 & Nand	StationM36	5			Account Manager: Susan Pelzl				
Contact:	Jennifer Sa	nchez									
Standard:	FCC 15B, 9	00Z, RSS						Class:	N/A		
PSD											
Frequency	99% ⁴	Madulation	Р	SD ² dBm/MF	ŀz	Total	PSD	PSD EIRP	Limit (eirp)	Daga ar Fa	
(MHz)	BW	Modulation	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	Pass or Fa	
5 MHz Moa	le										
3653	4.2	MCS 0	9.4	10.3		19.5	12.9	28.9	30.0	PASS	
3662	4.2	MCS 0	9.4	9.8		18.3	12.6	28.6	30.0	PASS	
3672	4.2	MCS 0	9.9	10.2		20.3	13.1	29.1	30.0	PASS	
10 MHz Mo		MCCO	/ /	/ 0		0.0	0.7	25.7	20.0	DACC	
3655 3662	8.5 8.5	MCS 0 MCS 0	6.4 7.1	6.9 7.0		9.3 10.1	9.7 10.1	25.7 26.1	30.0 30.0	PASS PASS	
3670	8.5	MCS 0	7.1	7.0		10.1	10.1	26.4	30.0	PASS	
20 MHz Mo		IVICO	7.0	7.1		10.7	10.4	20.4	30.0	1 733	
3660	16.8	MCS 0	5.8	6.2		7.9	9.0	25.0	30.0	PASS	
3662	16.8	MCS 0	5.9	6.0		7.9	9.0	25.0	30.0	PASS	
3665	16.8	MCS 0	7.0	7.0		9.9	10.0	26.0	30.0	PASS	
25 MHz Mo								•	1	•	
3662	21.1	MCS 0	4.8	5.4		6.5	8.1	24.1	30.0	PASS	
Note 1:	Power setti	ng is the softw	vare settina i	ised to set th	ne outnut nov	NA.					
NOIC 1.		er measured					s, sweep tim	e 10 second	s, max hold.	The total	
Note 0		integrated over									
Note 2:	was configu	ired with a gat	ted sweep si	uch that the a	analyzer was	only sweepi	ng when the	device was t	ransmitting.	The plot for	
	the channe	with the high	est power is	provided bel	OW.						
		s measured u									
Note 3:		Multiple sweep	ps were mad	le until the di	splay had no	new "peaks'	'. The plot to	or the channe	el with the hig	jhest power	
Note 4	is provided	below. vidth measure	d in accorda	nco with DCG	S CENI DD	10/ of coan	and \/D > _2	vDD			
Note 4:		systems the to							f the individu	ıal chains (i	
		s). The antenr						•			
		e MIMO device									
Note 5:		the highest ga									
		e signals are o					•	•	•		
	the EIRP is	the product o	f the effectiv	e gain and to	ital power.			_			
		9, Chain 1 = J									

E E	Elliott An Wie Company	EMO	C Test Data
Client:	Ubiquiti Networks	Job Number:	J82268
Model	NanoBridgeM365 & NanoStationM365	T-Log Number:	T82413
woden.	Natiobilugewisos & Natiostationivisos	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15B, 90Z, RSS	Class:	N/A

Run #3: Bandwidth, Output Power and Power Spectral Density - MIMO Systems

3655

3662

23,18

MCS 0

11.8

11.3

Limits from 90.321(a): Base and fixed stations are limited to 25 watts/25 MHz equivalent isotropically radiated power (EIRP). In any event, the peak EIRP power density shall not exceed 1 Watt in any one-megahertz slice of spectrum (30dBm/MHz).

Date of Test: 3/14/2011 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: none
Test Location: FT Lab #4 EUT Voltage: POE

			Chain 1	Chain 2	Chain 3	Coherent	Effective ³	EIRP (mW)	FIRP (dBm)	
	Antenna	a Gain (dBi):	21	21		Yes	24.0	17465.3	42.4	
Power - Lin	nit accounts	for maximu	m antenna 🤉	gain at this p	ower settin	g.				
Frequency	Software	Modulation	Measure	d Output Pov	ver ² dBm	To	otal	EIRP	Limit (eirp)	Pass or Fail
(MHz)	Setting ¹	iviouulation	Chain 1	Chain 2	Chain 3	mW	dBm	dBm	dBm	rass ui raii
5 MHz Mod	e									
3653	16,12	MCS 0	9.0	8.4		14.9	11.7	35.7	44.0	PASS
3662	17,12	MCS 0	9.2	8.4		15.2	11.8	35.8	44.0	PASS
3672	17,13	MCS 0	8.9	8.6		15.0	11.8	35.8	44.0	PASS
10 MHz Mo	de									

3670	23,19	MCS 0	11.5	11.6	28.6	14.6	38.6	44.0	PASS
20 MHz Mo	d e								
3660	27,24	MCS 0	14.1	14.2	52.0	17.2	41.2	44.0	PASS
3662	28,25	MCS 0	14.4	14.6	56.4	17.5	41.5	44.0	PASS
3665	28,24	MCS 0	14.5	14.2	54.5	17.4	41.4	44.0	PASS
25 MHz Mo	d e								
3662	30,26	MCS 0	15.5	15.3	69.4	18.4	42.4	44.0	PASS

28.6

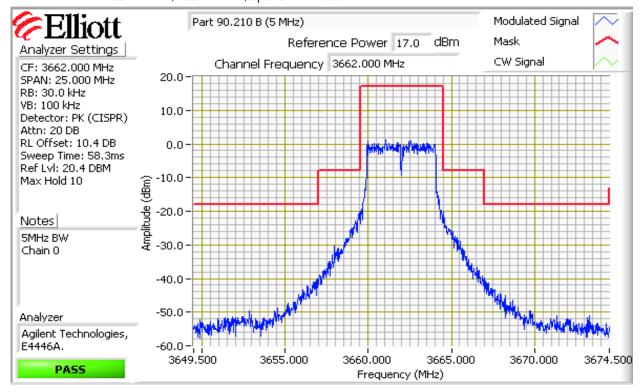
14.6

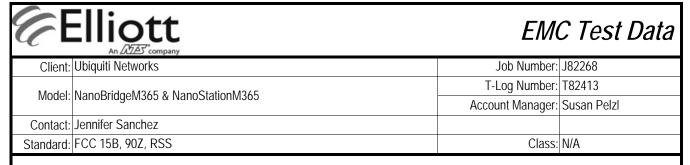
38.6

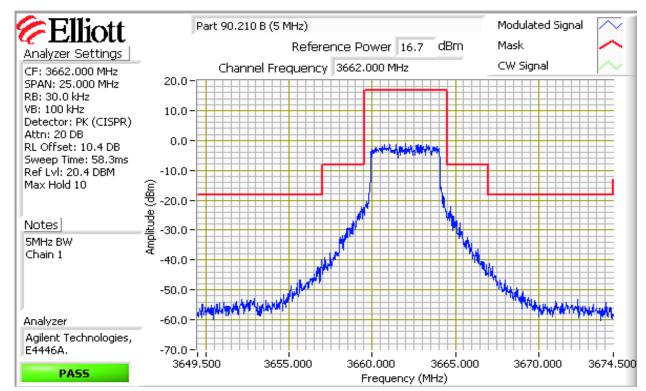
44.0

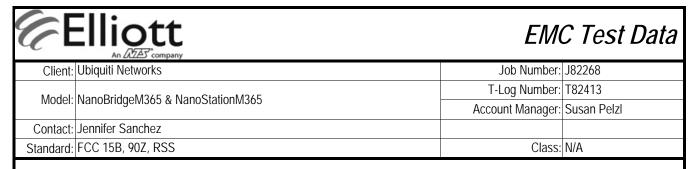
PASS

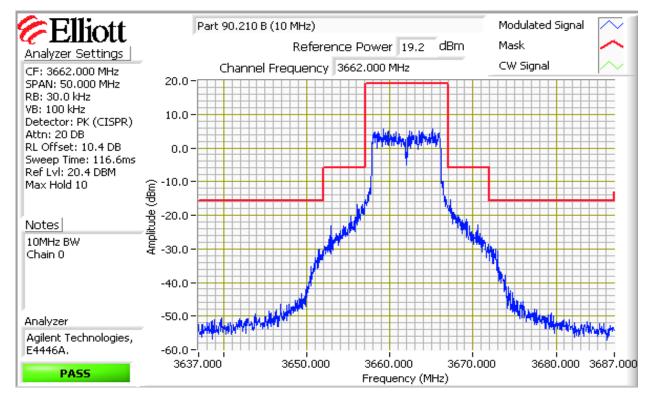
PASS

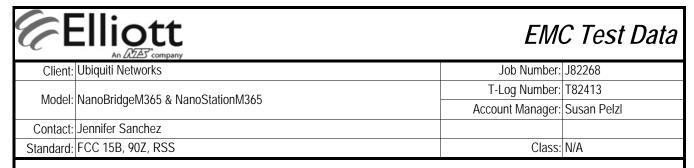

Client	Ubiquiti Net	Company						Job Number:	J82268	
								Log Number:		
Model:	NanoBridge	eM365 & Nand	StationM36	5			Account Manager: Susan Pelzl			
Contact:	Jennifer Sa	nchez								
Standard:	FCC 15B, 9	00Z, RSS						Class:	N/A	
PSD										
Frequency	99% ⁴	Madulation	Р	SD ² dBm/MF	ŀz	Total	IPSD	PSD EIRP	Limit (eirp)	Daga ar Fa
(MHz)	BW	Modulation	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	Pass or Fa
5 MHz Moa	le	<u>.</u>								
3653	4.2	MCS 0	3.1	2.5		3.8	5.8	29.8	30.0	PASS
3662	4.2	MCS 0	3.2	2.5		3.9	5.9	29.9	30.0	PASS
3672	4.2	MCS 0	3.0	2.7		3.9	5.9	29.9	30.0	PASS
10 MHz Mo		MCCO	2.1	٦٢		2.0	Го	20.0	20.0	DACC
3655 3662	8.5 8.5	MCS 0	3.1	2.5 2.5		3.8 3.8	5.8 5.8	29.8 29.8	30.0 30.0	PASS PASS
3670	8.5	MCS 0	2.9	2.8		3.9	5.9	29.0	30.0	PASS
20 MHz Mo		WOJU	2.7	2.0		3.7	3.7	27.7	30.0	1 733
3660	16.8	MCS 0	2.7	2.6		3.7	5.7	29.7	30.0	PASS
3662	16.8	MCS 0	2.9	2.8		3.9	5.9	29.9	30.0	PASS
3665	16.8	MCS 0	2.9	2.4		3.7	5.7	29.7	30.0	PASS
25 MHz Mo							1	1	1	•
3662	20.9	MCS 0	3.2	2.6		3.9	5.9	29.9	30.0	PASS
Note 1:	Power setti	ng is the softw	vare settina i	ised to set th	ne outnut nov	ver				
NOIC 1.		er measured					s, sweep tim	e 10 second	s, max hold.	The total
Note 0		integrated over								
Note 2:		ired with a ga								
	the channe	with the high	est power is	provided bel	OW.					
		s measured u								
Note 3:		Multiple swee	ps were mad	le until the di	splay had no	new "peaks'	". The plot fo	or the channe	el with the hiç	ghest power
Note 4	is provided	below. vidth measure	d in accorda	noo with DCG	CCN DD	10/ of coop	and VD . C	lyDD		
Note 4:		systems the to							f the individu	ıal chains (iı
		s). The anteni						•		
		e MIMO device								
Note 5:		the highest g								
		e signals are					•	•	•	
		•		e gain and to	•		•	, ,		
	the Enti-									

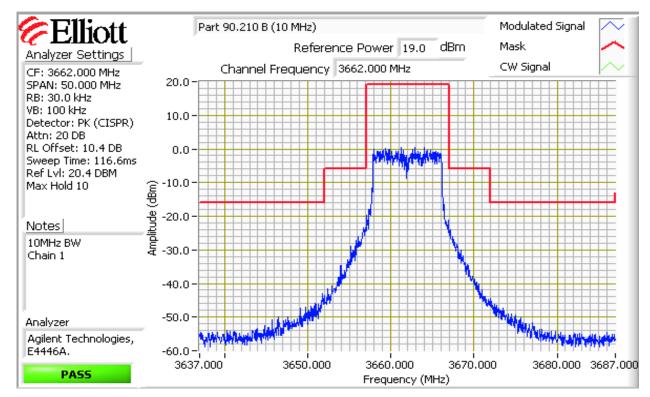

An ATAS company			C Test Data
Client:	Ubiquiti Networks	Job Number:	J82268
Madalı	NanoBridgeM365 & NanoStationM365	T-Log Number:	T82413
Model.	Ivanobnugewisos & Ivanostationivisos	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15B, 90Z, RSS	Class:	N/A

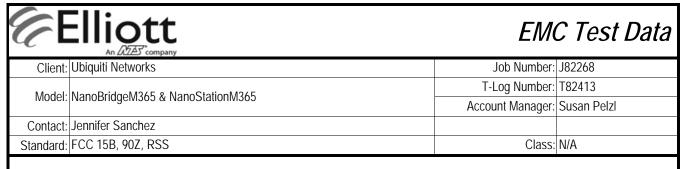

Run #4: Unwanted emissions (Masks), MCSO at highest power setting used for Power measurements

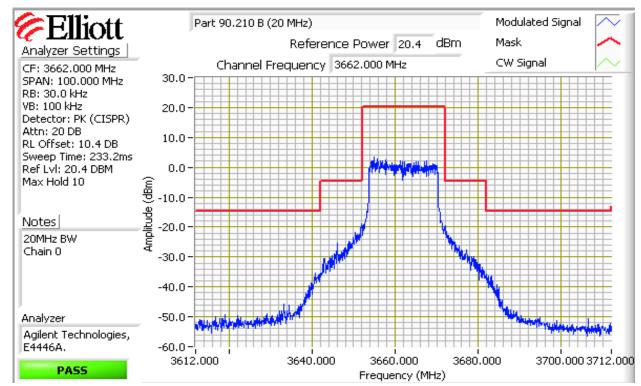

Date of Test: 3/16/2011 Config. Used: 1
Test Engineer: Mark Hill Config Change: none
Test Location: FT Lab#4 EUT Voltage: POE

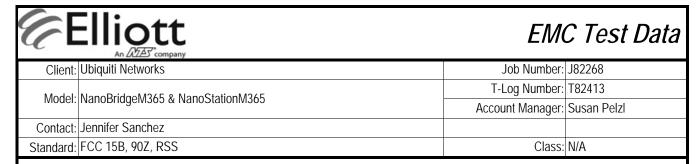

30kHz RBW, 100KHz VBW, Span 5x BW mode

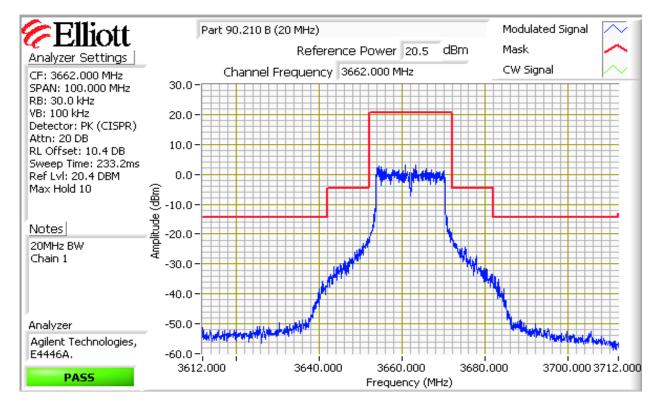


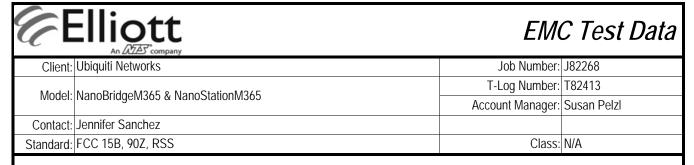


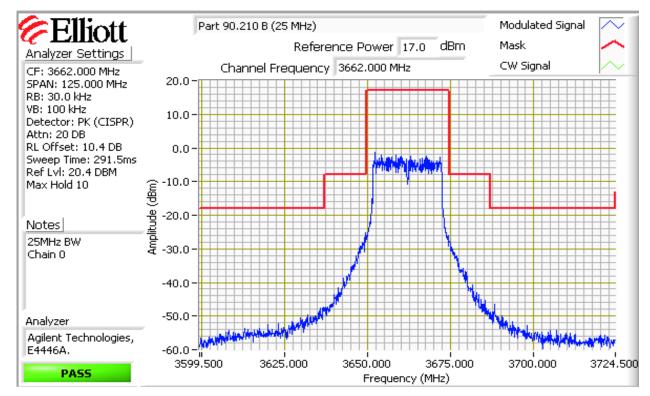


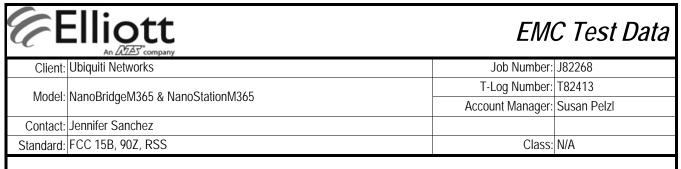


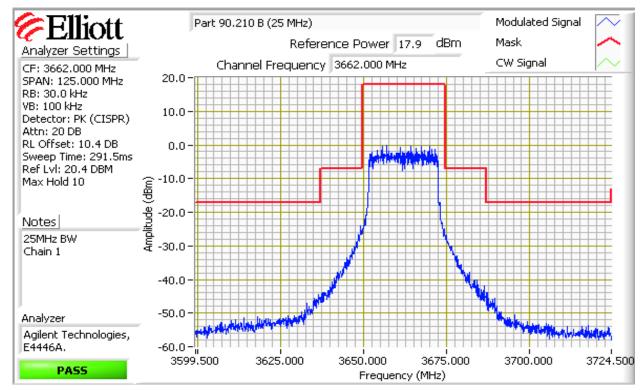






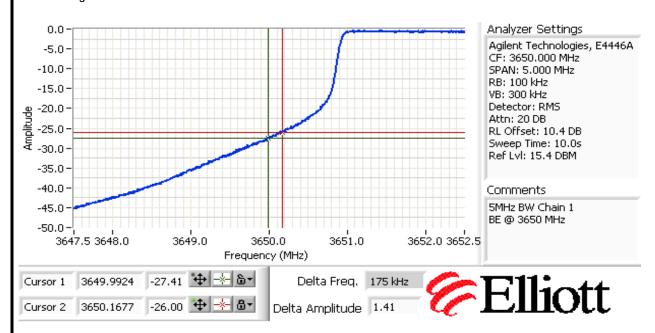




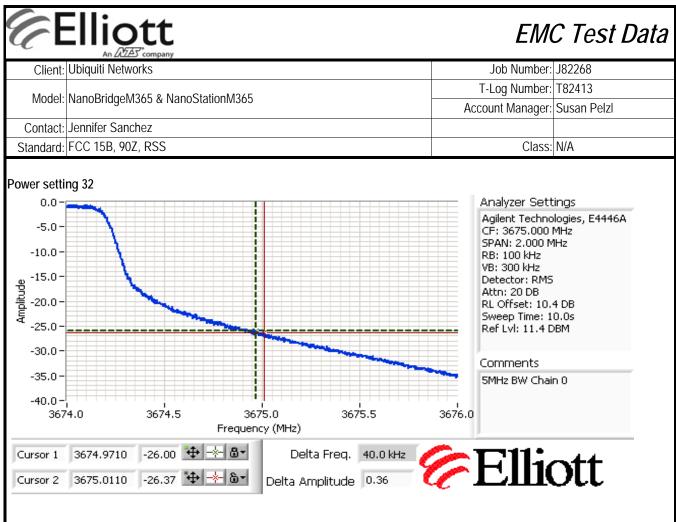


EMC Test Data Client: Ubiquiti Networks Job Number: J82268 T-Log Number: T82413 Model: NanoBridgeM365 & NanoStationM365 Account Manager: Susan Pelzl Contact: Jennifer Sanchez Standard: FCC 15B, 90Z, RSS Class: N/A Run #4: Unwanted emissions, MCS0 at highest power setting used for Power measurements Date of Test: 3/14/2011 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: none Test Location: FT Lab #4 EUT Voltage: POE Number of transmit chains:

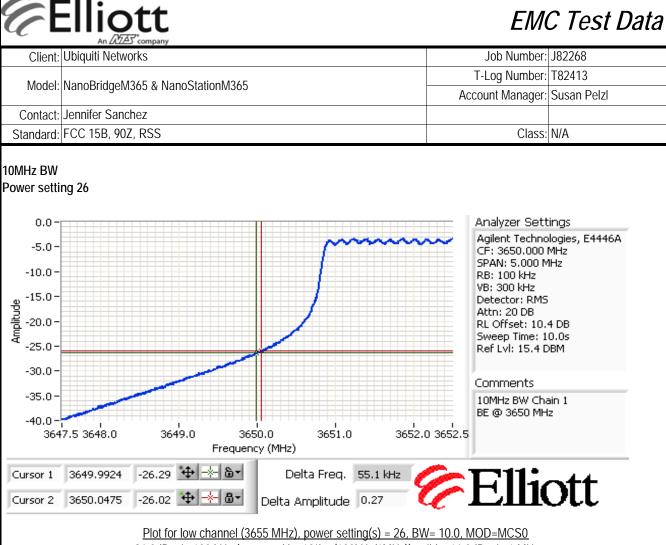
Spurious Limit:

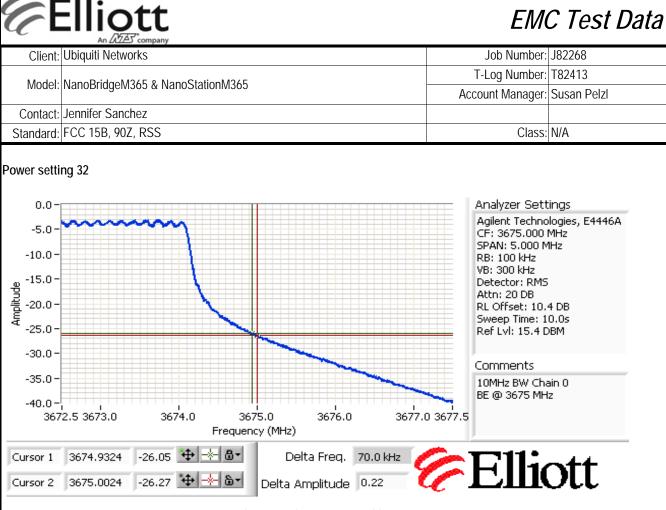

-23.0 dBm/100kHz (-13dBm/MHz) eirp -3.0 dB adjustment for multiple chains. Adjustment for 2 chains: Limit Used On Plots -26.0 dBm/100 kHz (-16dBm/MHz) eirp

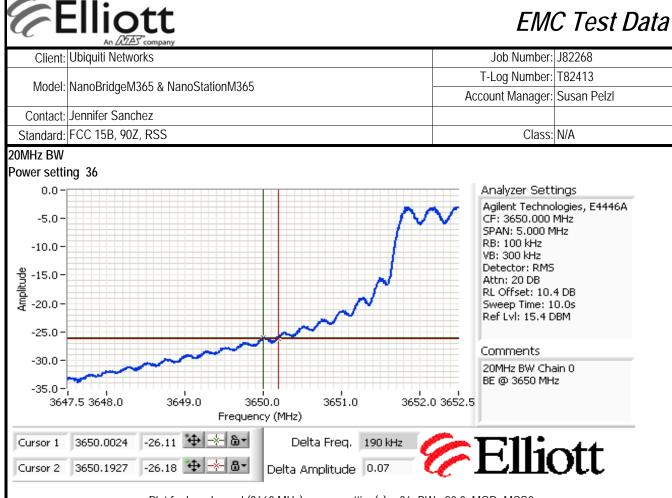
MIMO Devices: The plots were obtained for the chain with the highest PSD and the limit was adjusted to account for all chains transmitting simultaneously

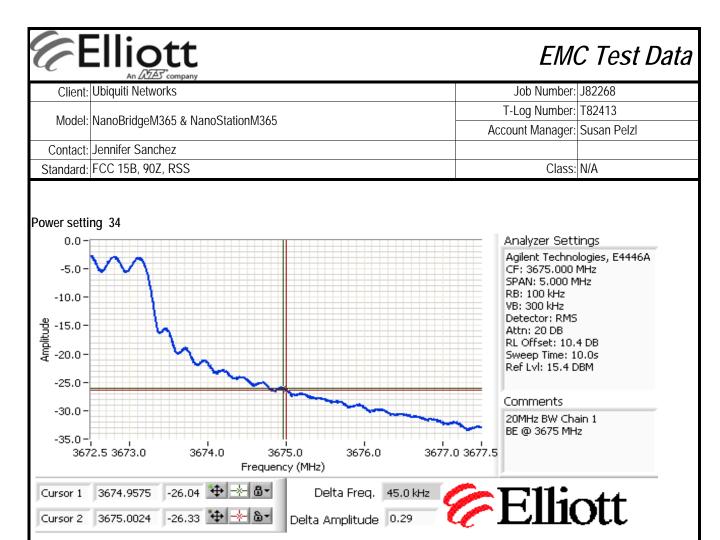

Band edge Measurements

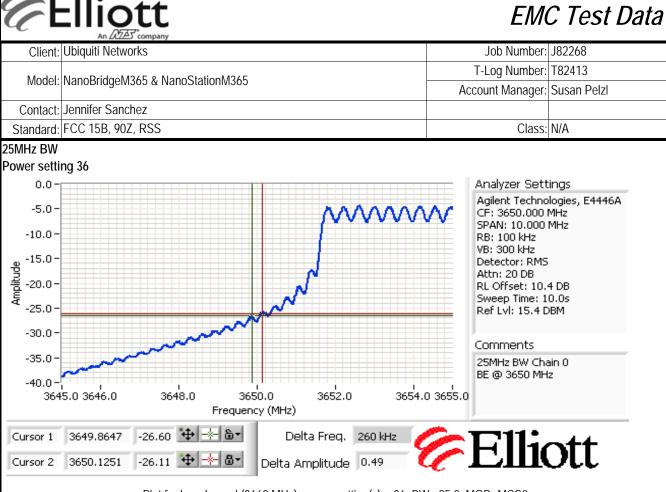
5MHz BW

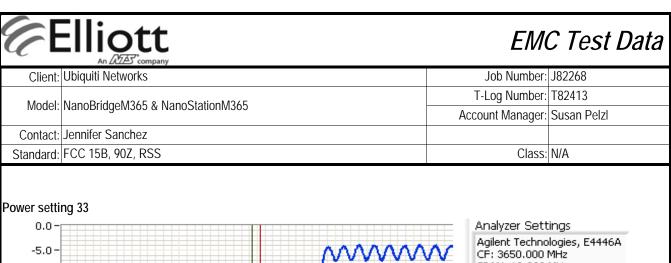

Power setting 27

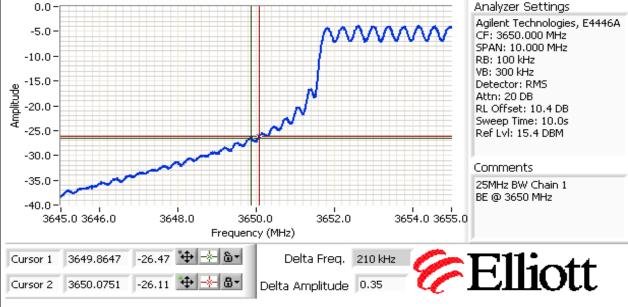

Plot for low channel (3653 MHz), power setting(s) = 27, BW= 5.0, MOD=MCS0 -27.4dBm in 100 kHz (corrected by 10*log(100kHz/1MHz)) yeilds -17.4dBm in 1 MHz


Plot for high channel (3672 MHz), power setting(s) = 32, BW= 5.0, MOD=MCS0
-26.4dBm in 100 kHz (corrected by 10*log(100kHz/1MHz)) yeilds -16.4dBm in 1 MHz


-26.0dBm in 100 kHz (corrected by 10*log(100kHz/1MHz)) yeilds -16.0dBm in 1 MHz


Plot for high channel (3670 MHz), power setting(s) = 32, BW= 10.0, MOD=MCS0 -26.3dBm in 100 kHz (corrected by 10*log(100kHz/1MHz)) yeilds -16.3dBm in 1 MHz


Plot for low channel (3660 MHz), power setting(s) = 36, BW= 20.0, MOD=MCS0 -26.1dBm in 100 kHz (corrected by 10*log(100kHz/1MHz)) yeilds -16.1dBm in 1 MHz



Plot for high channel (3665 MHz), power setting(s) = 34, BW= 20.0, MOD=MCS0 -26.3dBm in 100 kHz (corrected by 10*log(100kHz/1MHz)) yeilds -16.3dBm in 1 MHz

Plot for low channel (3662 MHz), power setting(s) = 36, BW= 25.0, MOD=MCS0
-26.6dBm in 100 kHz (corrected by 10*log(100kHz/1MHz)) yeilds -16.6dBm in 1 MHz

Plot for high channel (3662 MHz), power setting(s) = 33, BW= 25.0, MOD=MCS0 -26.5dBm in 100 kHz (corrected by 10*log(100kHz/1MHz)) yeilds -16.5dBm in 1 MHz

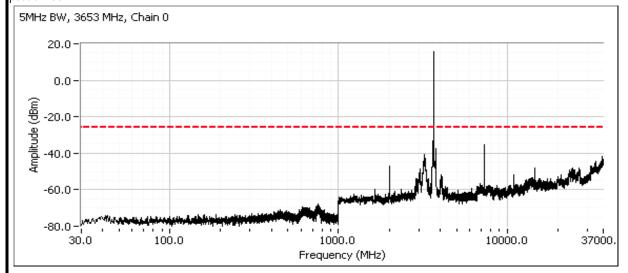
	Elliott An MAS company
OI! I	I Halandii Makamaka

EMC Test Data

	An ZAZZES company				
Client:	Ubiquiti Networks	Job Number:	J82268		
Model	NanoPridgoM265 & NanoStationM265	T-Log Number:	T82413		
wodei:	NanoBridgeM365 & NanoStationM365	Account Manager:	Susan Pelzl		
Contact:	Jennifer Sanchez				
Standard:	FCC 15B, 90Z, RSS	Class:	N/A		

Run #4: Unwanted emissions, MCSO at highest power setting used for Power measurements

Date of Test: 3/16/2011 Config. Used: 1
Test Engineer: Mark Hill Config Change: none
Test Location: FT Lab#4 EUT Voltage: POE

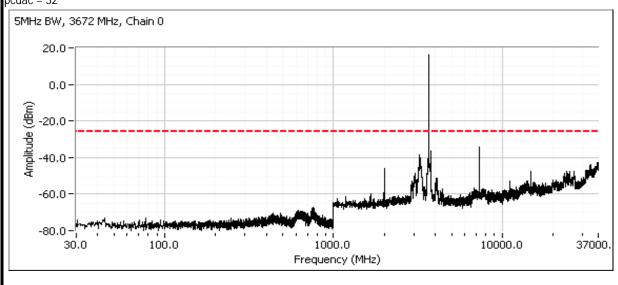

Number of transmit chains: 2

Spurious Limit: -13.0 dBm/MHz eirp = -23.0 dBm/100kHz Adjustment for 2 chains: -3.0 dB adjustment for multiple chains.

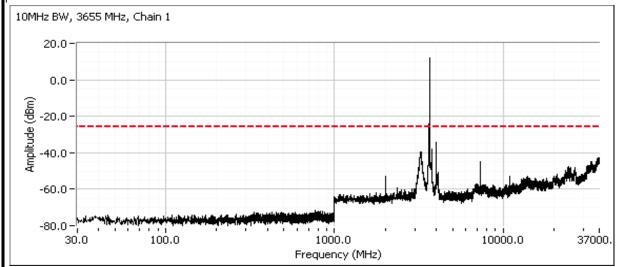
Limit Used On Plots -26.0 dBm/100 kHz

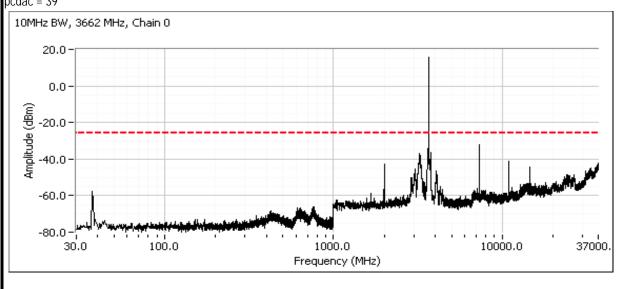
MIMO Devices: The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously, RBW=VBW=1MHz above 1 GHz and 100 kHz below 1 GHz.

Low channel

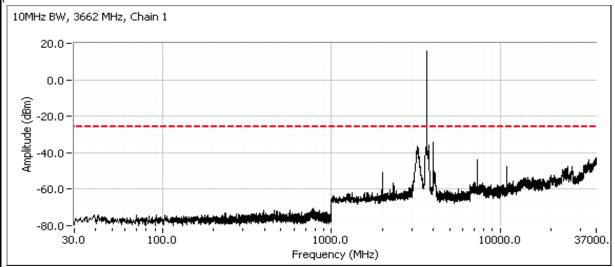

Client: Ubiquiti Networks			Job N	umber: J82268
lodel: NanoBridgeM365 & NanoStationM369	 5			umber: T82413
ntact: Jennifer Sanchez			Account Ma	nager: Susan Pelzl
dard: FCC 15B, 90Z, RSS				Class: N/A
= 27				
Hz BW, 3653 MHz, Chain 1				
20.0-				
0.0-				
-20.0				
-40.0-				
40.0 -		ANL	1 1	44.46
-60.0 -	25 - Alexandria	بالا كسياس	Name of Street	A STATE OF THE PERSON NAMED IN
-80.0 - Www.washanananananananananananananananananana				
30.0 100.0	1000.0 Frequency (MHz)		10000	.0 37000
channel = 32				
z BW, 3662 MHz, Chain 0				
20.0 -				
0.0				
0.0 -				
				لد ا

EMC Test Do			C Test Data
	Ubiquiti Networks	Job Number:	J82268
Madali	NanaDridgaM24E 9 NanaCtationM24E	T-Log Number:	T82413
woder:	NanoBridgeM365 & NanoStationM365	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15B, 90Z, RSS	Class:	N/A
nodac – 20			

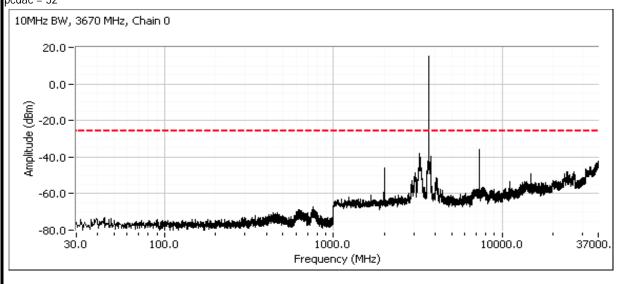

High channel



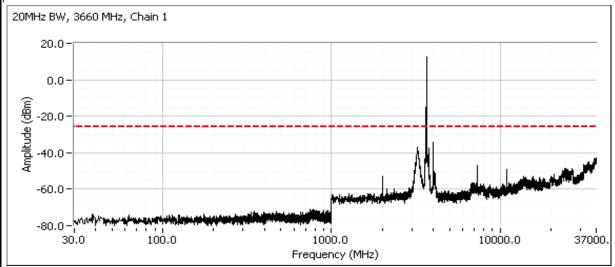
	ott					EM	C Te
Client: Ubiquiti I	∆\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				Job	Number	r: J82268
Model: NanoBrid	dgeM365 & NanoStationM36	65					T82413
				Ac	count	Manager	: Susan Pe
Contact: Jennifer andard: FCC 15E						Class	s: N/A
unduru.	1 702 TROO					Oldoc	
ac = 28							
1Hz BW, 3672 MI	tz, Chain 1						
20.0-							
0.0-							
(WgD) -20.0							
age and a second],			
₫ -40.0 - ₩				1		Ι.	
				li k		a distance	
-80.0	100.0	1000.0		The same	1000	0.0	370
-80.0 - MAYA-M	100.0	1000.0 Frequency			1000	0.0	370
-80.0 - MAYA-M		1000.0		V Linear Marie	1000	0.0	370
-80.0 - 30.0 THz Mode channel ac = 29 MHz BW, 3655 M		1000.0			1000	0.0	370
-80.0		1000.0			1000	0.0	370
-80.0		1000.0			1000	0.0	370
-80.0		1000.0			1000	0.0	370
-80.0		1000.0			1000	0.0	370
-80.0 - M/ 30.0 Hz Mode channel c = 29 MHz BW, 3655 M 20.0 - (1100) -20.0 - (1100) -40.0 - (1100)		1000.0	(MHz)		1000		370

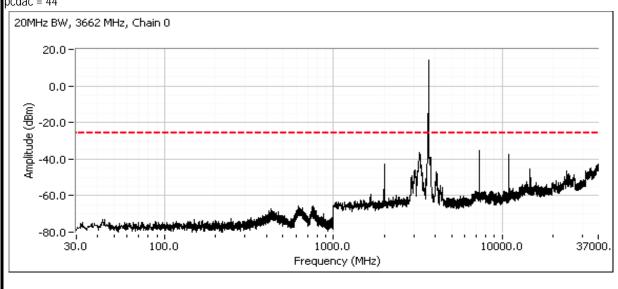

EMC Test Date			
	Ubiquiti Networks	Job Number:	J82268
Madali	NanoBridgeM365 & NanoStationM365	T-Log Number:	T82413
wouei.	Natiobilugewisos & Natiostationwisos	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15B, 90Z, RSS	Class:	N/A

Center channel

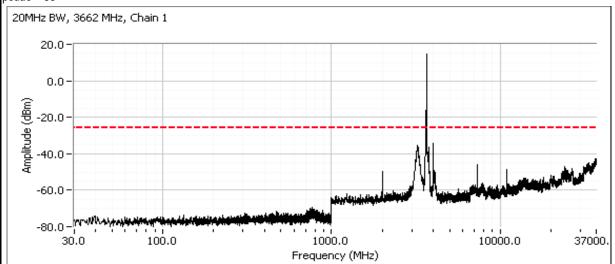


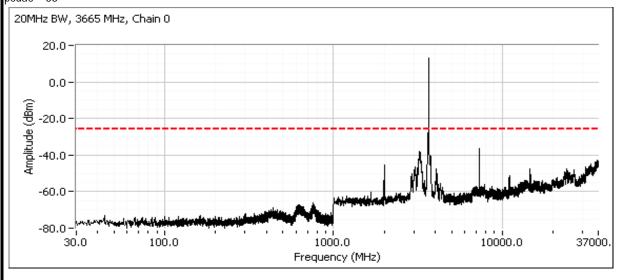
Elliott EMC Test D			C Test Data
Client:	Ubiquiti Networks	Job Number:	J82268
Model	NanoBridgeM365 & NanoStationM365	T-Log Number:	T82413
Model.	Natiobilityewsos & Natiostationwsos	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15B, 90Z, RSS	Class:	N/A

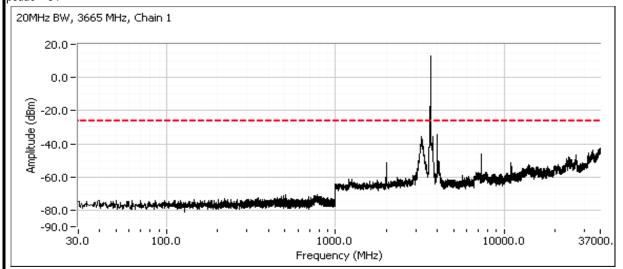

High channel

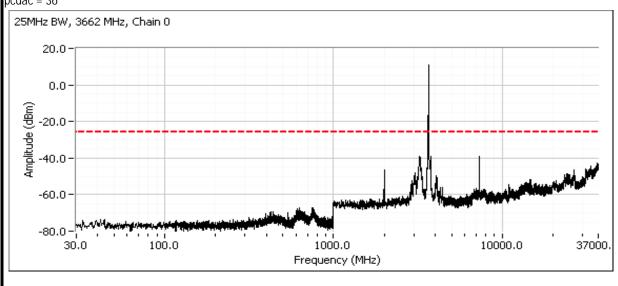


Client: Ubiquiti Networks Model: NanoBridgeM365 & NanoStationM365 Contact: Jennifer Sanchez Standard: FCC 15B, 90Z, RSS dac = 27 IOMHz BW, 3670 MHz, Chain 1 20.0 -	Job Number: J82268 T-Log Number: T82413 Account Manager: Susan Pelz Class: N/A
Contact: Jennifer Sanchez Standard: FCC 15B, 90Z, RSS dac = 27 IOMHz BW, 3670 MHz, Chain 1 20.0 -60.0 -80.0 30.0 MHz Mode w channel dac = 36 ZOMHz BW, 3660 MHz, Chain 0 20.0 0.0 0.0	Account Manager: Susan Pelz
Contact: Jennifer Sanchez Standard: FCC 15B, 90Z, RSS dac = 27 IOMHz BW, 3670 MHz, Chain 1 20.0 -60.0 -80.0 30.0 MHz Mode w channel dac = 36 ZOMHz BW, 3660 MHz, Chain 0 20.0 0.0 0.0	Class: N/A
Standard: FCC 15B, 90Z, RSS dac = 27 10MHz BW, 3670 MHz, Chain 1 20.0 -0.0 -80.0 -80.0 -80.0 -80.0 MHz Mode w channel dac = 36 20MHz BW, 3660 MHz, Chain 0 20.0 -0.0 -0.0	
dac = 27 10MHz BW, 3670 MHz, Chain 1 20.0 -	
MHz Mode w channel dac = 36 2000- MHz BW, 3670 MHz, Chain 0 20.0- 0.0	
20.0 -	
MHz Mode w channel dac = 36 20MHz BW, 3660 MHz, Chain 0	
MHz Mode w channel dac = 36 20MHz BW, 3660 MHz, Chain 0	
MHz Mode w channel dac = 36 20MHz BW, 3660 MHz, Chain 0	
-60.080.0 - 1000.0 1000.0 Frequency (MHz) MHz Mode w channel dac = 36 20MHz BW, 3660 MHz, Chain 0	
-60.080.0 - 1000.0 1000.0 Frequency (MHz) MHz Mode w channel dac = 36 20MHz BW, 3660 MHz, Chain 0	
-60.080.0 - 1000.0 1000.0 Frequency (MHz) MHz Mode w channel dac = 36 20MHz BW, 3660 MHz, Chain 0	
-80.0 – W 1000.0 1000.0 Frequency (MHz) MHz Mode w channel dac = 36 20MHz Bw, 3660 MHz, Chain 0	
30.0 100.0 1000.0 Frequency (MHz) MHz Mode w channel dac = 36 20MHz BW, 3660 MHz, Chain 0	
MHz Mode w channel dac = 36 20MHz BW, 3660 MHz, Chain 0	10000.0 37000
w channel dac = 36 20MHz BW, 3660 MHz, Chain 0 20.0 -	
0.0-	
ĝ l	
号-20.0- │	
-20.0	
== -40.0 -	, na si
-60.0 -	ALL ALL DESCRIPTION OF THE PARTY OF THE PART
and the same of th	The state of the s
-80.0 - 100.0 1000.0 Frequency (MHz)	10000.0 37000


Elliott EMC Test D			C Test Data
Client:	Ubiquiti Networks	Job Number:	J82268
Madali	NanoBridgeM365 & NanoStationM365	T-Log Number:	T82413
wouei.	Ivanobnugewisos & Ivanostationwisos	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15B, 90Z, RSS	Class:	N/A


Center channel


	Elliott EMC Test D		
Client:	Ubiquiti Networks	Job Number:	J82268
Madali	NanaBridgeM24E & NanaStationM24E	T-Log Number:	T82413
wouei.	NanoBridgeM365 & NanoStationM365	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15B, 90Z, RSS	Class:	N/A


High channel

Elliott EMC Test D			C Test Data
Client:	Ubiquiti Networks	Job Number:	J82268
Model	NanaBridgeM24E & NanaStationM24E	T-Log Number:	T82413
wouei.	NanoBridgeM365 & NanoStationM365	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15B, 90Z, RSS	Class:	N/A

25 MHz Mode

	Elliott An ATAS company	EM	C Test Data
Client:	Ubiquiti Networks	Job Number:	J82268
Model	NanaDridgeM24E 9 NanaStationM24E	T-Log Number:	T82413
wouei.	NanoBridgeM365 & NanoStationM365	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15B, 90Z, RSS	Class:	N/A

	Elliott An AZAS company	EMC Test Data			
Client:	Ubiquiti Networks	Job Number:	J82268		
Model	NanoBridgeM365 & NanoStationM365	T-Log Number:	T82413		
woden.	ivaniodituyewood a ivaniostationiwood	Account Manager:	Susan Pelzl		
Contact:	Jennifer Sanchez				
Standard:	FCC 15B, 90Z, RSS	Class:	N/A		

RSS 197 and FCC Part 90 Frequency Stability

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 3/25/2011 0:00 Config. Used: 1 Test Engineer: John Caizzi Config Change: none Test Location: Lab 4 EUT Voltage: 120V / 60Hz

General Test Configuration

The EUT's RF port was connected to the measurement instrument's RF port, via an attenuator or dc-block if necessary. The EUT was placed inside an environmental chamber.

Ambient Conditions: Temperature: 22 °C

> Rel. Humidity: 33 %

Summary of Results

Run #	Test Performed	Limit	Result	Value / Margin
1-2	Frequency and Voltage Stability	Part 90.213	Pass	27520 Hz / 7.53 ppm

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

EMC Test Data

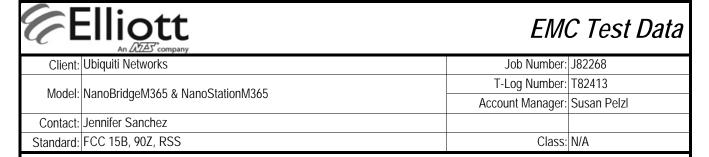
	An 2022 Company		
Client:	Ubiquiti Networks	Job Number:	J82268
Model:	NanoBridgeM365 & NanoStationM365	T-Log Number:	T82413
	Ivanobnugewisos & Ivanostationivisos	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC 15B, 90Z, RSS	Class:	N/A

Run #1: Temperature Vs. Frequency (Fixed stations in the 3650-3675 MHz band)

Note 1: For all tests: Unmodulated signal using mode QAM16 at frequency 3662.5 MHz with power setting of 27 dBm was used.

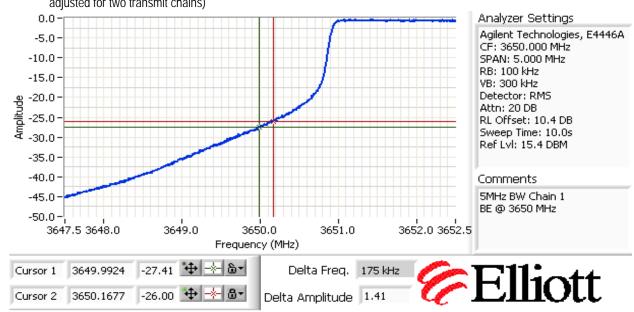
Analyzer settings were as follow: RBW=VBW= 1kHz and Span=5kHz.

Note 2: Frequency stability is to be specified in the station authorization.

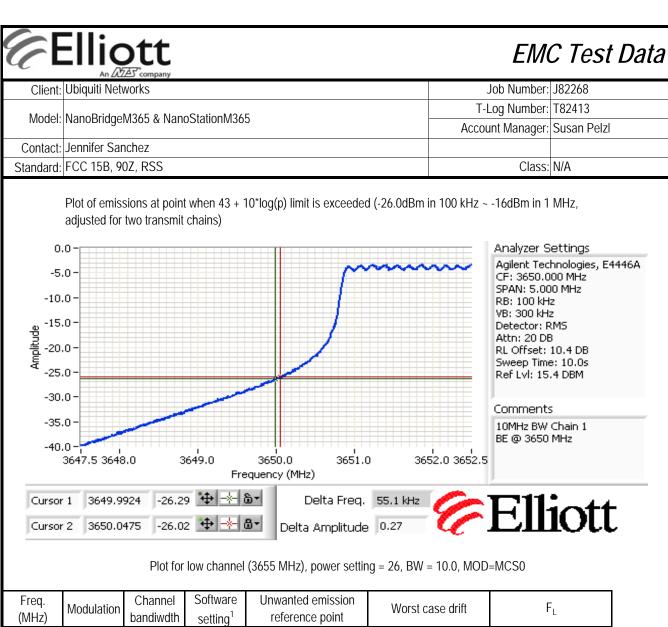

<u>Temperature</u>	Reference Frequency	Measured frequency	<u>Drift</u>	<u>Limit</u>
(Celsius)	(MHz)	(MHz)	(Hz)	(Hz)
-30	3652.992740	3653.020090	27350	Note 2
-20	3652.992740	3653.020260	27520	Note 2
-10	3652.992740	3653.015930	23190	Note 2
0	3652.992740	3653.008760	16020	Note 2
10	3652.992740	3653.000750	8010	Note 2
20	3652.992740	3652.992740	0	Note 2
30	3652.992740	3652.987400	5340	Note 2
40	3652.992740	3652.985400	7340	Note 2
50	3652.992740	3652.990580	2160	Note 2

Run #2: Voltage Vs. Frequency

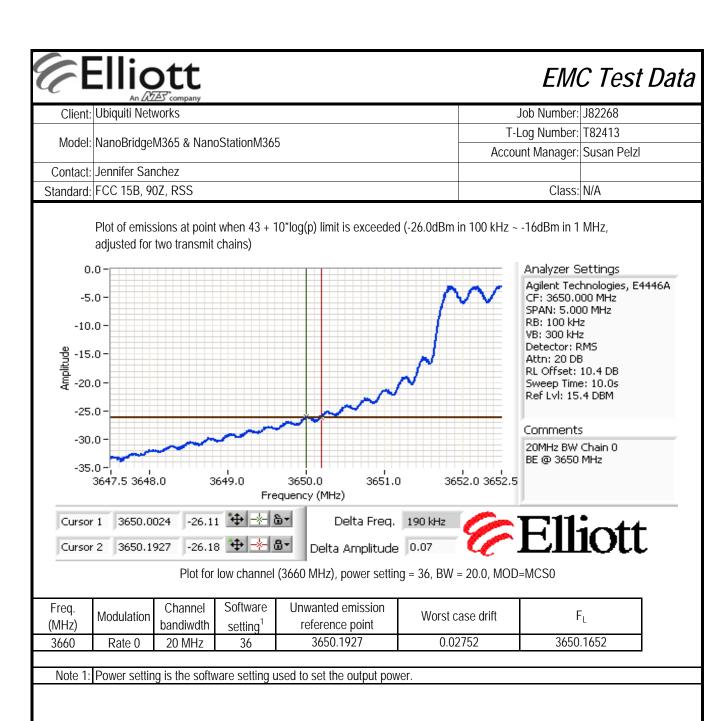
Nominal Voltage is 120 VAC

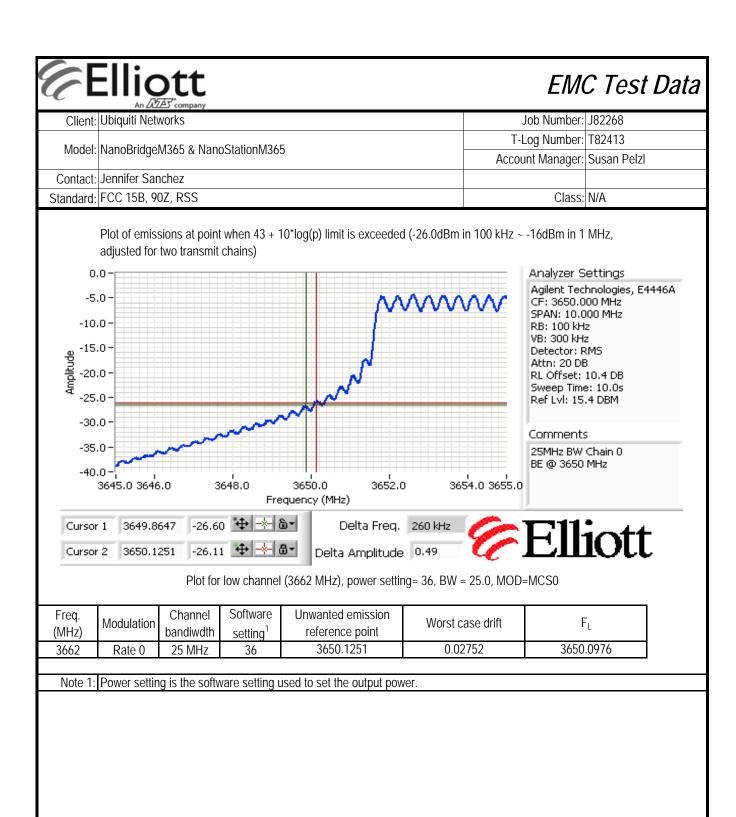

<u>Voltage</u>	Reference Frequency	Frequency Drift	<u>Drift</u>	<u>Limit</u>
120V	(MHz)	(MHz)	(Hz)	(Hz)
85%	3652.992740	3652.993080	340	Note 2
115%	3652.992740	3652.992740	0	Note 2

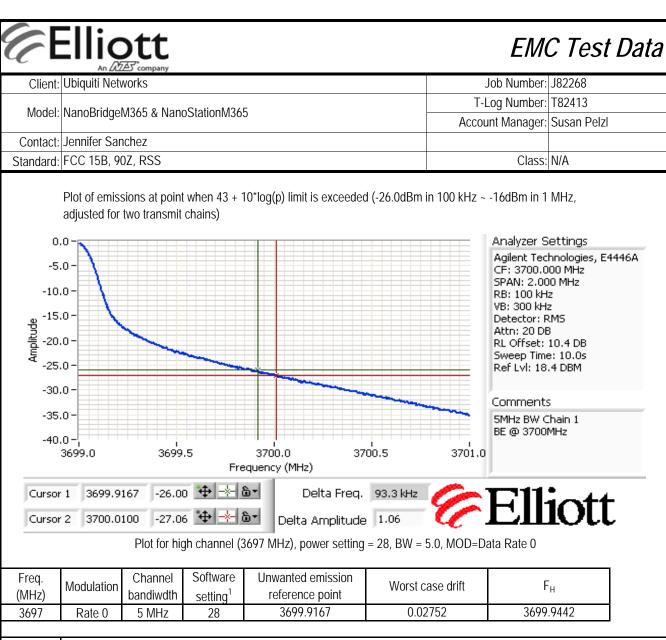
Worst case drift: 27520 Hz 7.53 ppm

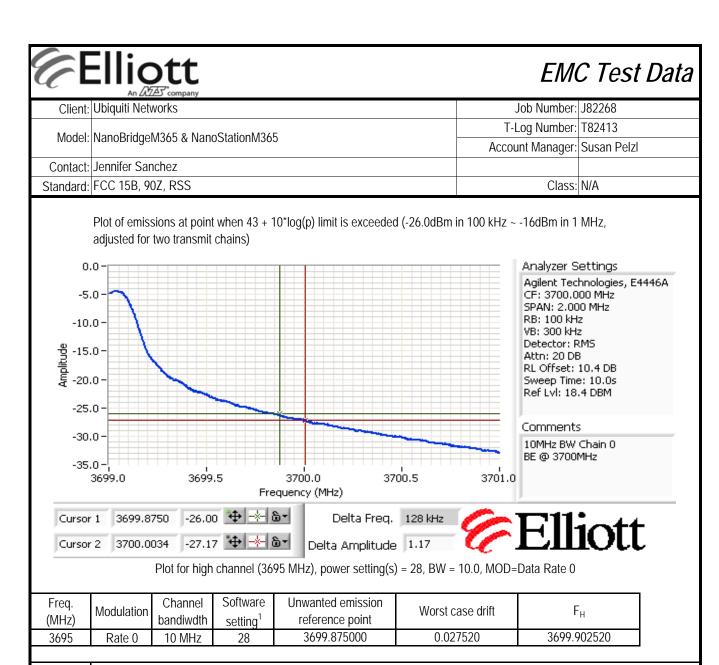

Plots below show band edge amplitudes for worst case modulation at each BW. Adding worst case drift to show compliance with frequency stability requirements.

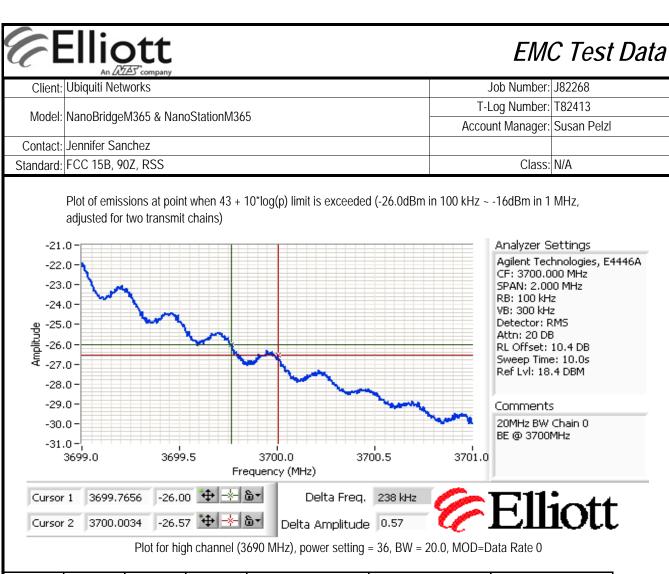
Plot of emissions at point when 43 + 10*log(p) limit is exceeded (-26.0dBm in 100 kHz ~ -16dBm in 1 MHz, adjusted for two transmit chains)

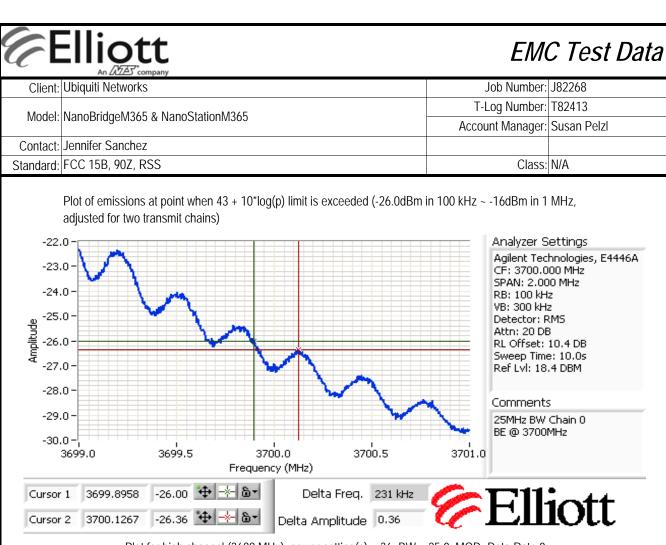



Plot for low channel (3653 MHz), power setting = 27, BW = 5.0, MOD=MCS0


Freq.	Modulation	Channel	Software	Unwanted emission	Worst case drift	E
(MHz)	Modulation	bandiwdth	setting ¹	reference point	Worst case unit	' [
3653	Rate 0	5 MHz	27	3650.1677	0.02752	3650.1402




Freq.	Modulation	Channel	Software	Unwanted emission	Worst case drift	E
(MHz)	Modulation	bandiwdth	setting ¹	reference point	WOISI Case unit	' [
3655	Rate 0	10 MHz	26	3650.0475	0.02752	3650.0200



Freq.	Modulation	Channel	Software	Unwanted emission	Worst case drift	Е
(MHz)	Modulation	bandiwdth	setting ¹	reference point	Worst case unit	'Н
3690	Rate 0	20 MHz	36	3699.765600	0.027520	3699.793120

Plot for high channel (3688 MHz), power setting(s) = 36, BW = 25.0, MOD=Data Rate 0

Freq.	Modulation	Channel	Software	Unwanted emission	Worst case drift	Е
(MHz)	Modulation	bandiwdth	setting ¹	reference point	Worst case unit	' Н
3688	Rate 0	25 MHz	36	3699.895800	0.027520	3699.923320

END OF REPORT

This page is intentionally blank and marks the last page of this test report.

File: R82649 Page 83