

# MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313 33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587-3201 • PHONE (510) 489-6300 • FAX (510) 489-6372 3162 BELICK STREET • SANTA CLARA, CA 95054-2401 • PHONE (408) 748-3585 • FAX (510) 489-6372

May 20, 2010

Ubiquiti Networks 91 E. Tasman San Jose, CA 95134

Dear Robert Pera,

Enclosed is the EMC test report for compliance testing of the Ubiquiti Networks, NS5L tested to the requirements of ETSI EN 301 893 (Article 3.2 of R&TTE Directive).

Thank you for using the services of MET Laboratories, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours,

MET LABORATORIES, INC.

Jennifer Warnell

**Documentation Department** 

Reference: (\Ubiquiti Networks\EMCS82332-ETS893)

Certificates and reports shall not be reproduced except in full, without the written permission of MET Laboratories, Inc. .

DOC-EMC602 4/30/2004



MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313 33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587-3201 • PHONE (510) 489-6300 • FAX (510) 489-6372 3162 BELICK STREET • SANTA CLARA, CA 95054-2401 • PHONE (408) 748-3585 • FAX (510) 489-6372

### **Electromagnetic Compatibility Criteria Test Report**

For the

**Ubiquiti Networks** Model NS5L

Tested under

**ETSI EN 301 893** (Article 3.2 of R&TTE Directive)

**MET Report: EMCS82332-ETS893** 

May 20, 2010

**Prepared For:** 

**Ubiquiti Networks** 91 E. Tasman San Jose, CA 95134

> Prepared By: MET Laboratories, Inc. 914 W. Patapsco Ave. Baltimore, MD 21230



### Electromagnetic Compatibility Criteria Test Report

For the

Ubiquiti Networks Model NS5L

Tested under

ETSI EN 301 893 (Article 3.2 of R&TTE Directive)

**MET Report: EMCS82332-ETS893** 

Minh Ly

Electromagnetic Compatibility Lab

Jennifer Warnell

Documentation Department

**Engineering Statement:** The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of ETSI EN 301 893 of the EU Rules under normal use and maintenance.

Shawn McMillen,

Wireless Manager, Electromagnetic Compatibility Lab



# **Report Status Sheet**

| Revision | Report Date  | Reason for Revision |
|----------|--------------|---------------------|
| Ø        | May 20, 2010 | Initial Issue.      |



# **Table of Contents**

| I.   | Re | quirements Summaryquirements Summary                                         | 1            |
|------|----|------------------------------------------------------------------------------|--------------|
| II.  | Eq | uipment Configuration                                                        | 3            |
|      | A. | Överview                                                                     | 4            |
|      | B. | References                                                                   | 4            |
|      | C. | Test Site                                                                    | 5            |
|      | D. | Description of Test Sample                                                   | 5            |
|      | E. | Equipment Configuration                                                      | <del>6</del> |
|      | F. | Support Equipment                                                            | <del>6</del> |
|      | G. | Ports and Cabling Information                                                |              |
|      | H. | Mode of Operation                                                            | 7            |
|      | I. | Method of Monitoring EUT Operation                                           | 7            |
|      | J. | Modifications                                                                | 7            |
|      |    | a) Modifications to EUT                                                      | 7            |
|      |    | b) Modifications to Test Standard                                            | 7            |
|      | K. | Disposition of EUT                                                           | 7            |
| III. | Co | nformance Requirements                                                       | 8            |
|      |    | 4.2 Centre Frequencies                                                       | 9            |
|      |    | 4.3 Nominal Channel Bandwidth and Occupied Channel Bandwidth                 | 11           |
|      |    | 4.4 RF Output Power, Transmit Power Control (TPC), and Power Density         | 13           |
|      |    | 4.5.1 Transmitter Unwanted Emissions Outside the 5GHz RLAN Bands (Conducted) |              |
|      |    | 4.5.1 Transmitter Unwanted Emissions Outside the 5GHz RLAN Bands (Radiated)  | 24           |
|      |    | 4.5.2 Transmitter Unwanted Emissions Within the 5GHz RLAN Bands (Conducted)  | 33           |
|      |    | 4.5.2 Transmitter Unwanted Emissions Within the 5GHz RLAN Bands (Radiated)   | 37           |
|      |    | 4.6 Receiver Spurious Emissions (Conducted)                                  | 39           |
|      |    | 4.6 Receiver Spurious Emissions (Radiated)                                   |              |
|      |    | 4.8 Medium Access Protocol                                                   | 45           |
|      |    | 4.9 User Access Restrictions                                                 |              |
| IV.  | DF | 'S Requirements                                                              | 47           |
|      |    | Dynamic Frequency Selection (DFS)                                            | 48           |
|      |    | Required Radar Test Waveforms                                                |              |
|      |    | Radar Waveform Calibration                                                   | 53           |
|      |    | Test Setup for EUT                                                           | 55           |
|      |    | Channel Shutdown and Non-Occupancy Period                                    | 56           |
| V    | To | st Equipment                                                                 | 50           |



# **List of Tables**

| Table 1. Summary of EMC ETSI EN 301 893 Compliance Testing                                    | 2  |
|-----------------------------------------------------------------------------------------------|----|
| Table 2. Test References                                                                      |    |
| Table 3. Equipment Configuration                                                              |    |
| Table 4. Support Equipment                                                                    |    |
| Table 5. Ports and Cabling Information                                                        |    |
| Table 6. Carrier Frequencies, Test Results                                                    |    |
| Table 7. Mean EIRP Limits for RF Output Power and Power Density at the Highest Power Level.   |    |
| Table 8. Mean EIRP Limits for RF Output Power at the Lowest Power Level of the TPC Range      |    |
| Table 9. RF Output Power, Test Results, 802.11a                                               |    |
| Table 10. Transmit Power Control, Test Results, 802.11a                                       |    |
| Table 11. Applicability of DFS requirements                                                   |    |
| Table 12. Interference Threshold values, Master or Client incorporating In-Service Monitoring |    |
| Table 13. DFS Requirement values                                                              |    |
| Table 14. Parameters of the reference DFS test signal                                         | 51 |
| Table 15. Detection Probability                                                               | 51 |
| Table 16. EN 301 893 1.5.1 Radar Test Waveforms                                               | 52 |
| Table 17. DFS Equipment List.                                                                 | 61 |
| List of Figures                                                                               |    |
| Figure 1. Block Diagram of Test Configuration 1                                               | 5  |
| Figure 2. Occupied Bandwidth Test Setup.                                                      |    |
| Figure 3. Output Power, TPC, and Power Density Test Setup                                     | 14 |
| Figure 4. Unwanted Conducted Emissions Outside Test Setup                                     |    |
| Figure 5. Unwanted Conducted Emissions Within Test Setup                                      |    |
| Figure 6. Receiver Spurious Emissions Test Setup                                              |    |
| Figure 7. Receiver Spurious Emissions Test Setup                                              |    |
| Figure 8. Radar Waveform Calibration Setup                                                    |    |
| Figure 9. Test Setup for Slave Device                                                         | 55 |



# **List of Photographs**

| Photograph 1. Radiated Emissions Setup, 30 MHz – 1 GHz                                           | 31 |
|--------------------------------------------------------------------------------------------------|----|
| Photograph 2. Radiated Emissions Setup, Above 1 GHz                                              | 32 |
| Photograph 3. Radar Test Signal Generator                                                        | 53 |
| Photograph 4. DFS Test Setup                                                                     | 58 |
|                                                                                                  |    |
| List of Plots                                                                                    |    |
| Plot 1. Occupied Bandwidth, 5500 MHz, 802.11a, Low Channel                                       | 12 |
| Plot 2. Occupied Bandwidth, 5700 MHz, 802.11a, High Channel                                      | 12 |
| Plot 3. Power Spectral Density, 5500 MHz, 802.11a, Low Channel                                   |    |
| Plot 4. Power Spectral Density, 5700 MHz, 802.11a, High Channel                                  |    |
| Plot 5. Out of Band Conducted Emissions, 5500 MHz, 802.11a Bandwidth, 30 MHz – 1 GHz             |    |
| Plot 6. Out of Band Conducted Emissions, 5500 MHz, 802.11a Bandwidth, 1 GHz – 5.15 GHz           |    |
| Plot 7. Out of Band Conducted Emissions, 5500 MHz, 802.11a Bandwidth, 5.35 GHz – 5.47 GHz        |    |
| Plot 8. Out of Band Conducted Emissions, 5500 MHz, 802.11a Bandwidth, 5.725 GHz - 18 GHz         |    |
| Plot 9. Out of Band Conducted Emissions, 5500 MHz, 802.11a Bandwidth, 18 GHz – 26 GHz            |    |
| Plot 10. Out of Band Conducted Emissions, 5700 MHz, 802.11a Bandwidth, 30 MHz – 1 GHz            |    |
| Plot 11. Out of Band Conducted Emissions, 5700 MHz, 802.11a Bandwidth, 1 GHz – 5.15 GHz          |    |
| Plot 12. Out of Band Conducted Emissions, 5700 MHz, 802.11a Bandwidth, 5.35 GHz – 5.47 GHz       |    |
| Plot 13. Out of Band Conducted Emissions, 5700 MHz, 802.11a Bandwidth, 5.725 GHz - 18 GHz        |    |
| Plot 14. Out of Band Conducted Emissions, 5700 MHz, 802.11a Bandwidth, 5.725 GHz, Zero Span with |    |
| Average                                                                                          |    |
| Plot 15. Out of Band Conducted Emissions, 5700 MHz, 802.11a Bandwidth, 18 GHz - 26 GHz           |    |
| Plot 17. Out of Band Radiated Emissions, 5500 MHz, 802.11a Bandwidth, 1 GHz – 1 GHz              |    |
| Plot 18. Out of Band Radiated Emissions, 5500 MHz, 802.11a Bandwidth, 5.35 GHz – 5.47 GHz        |    |
| Plot 19. Out of Band Radiated Emissions, 5500 MHz, 802.11a Bandwidth, 5.725 GHz - 18 GHz         |    |
| Plot 20. Out of Band Radiated Emissions, 5500 MHz, 802.11a Bandwidth, 18 GHz – 26 GHz            |    |
| Plot 21. Out of Band Radiated Emissions, 5700 MHz, 802.11a Bandwidth, 30 MHz – 1 GHz             |    |
| Plot 22. Out of Band Radiated Emissions, 5700 MHz, 802.11a Bandwidth, 1 GHz – 5.15 GHz           |    |
| Plot 23. Out of Band Radiated Emissions, 5700 MHz, 802.11a Bandwidth, 5.35 GHz – 5.47 GHz        |    |
| Plot 24. Out of Band Radiated Emissions, 5700 MHz, 802.11a Bandwidth, 5.725 GHz - 18 GHz         |    |
| Plot 25. Out of Band Radiated Emissions, 5700 MHz, 802.11a Bandwidth, 18 GHz – 26 GHz            |    |
| Plot 26. Inband Conducted Spurious, 5500 MHz, 802.11a Bandwidth, 70 MHz Span                     |    |
| Plot 27. Inband Conducted Spurious, 5500 MHz, 802.11a Bandwidth, 500 MHz Span                    |    |
| Plot 28. Inband Conducted Spurious, 5700 MHz, 802.11a Bandwidth, 70 MHz Span                     |    |
| Plot 29. Inband Conducted Spurious, 5700 MHz, 802.11a Bandwidth, 500 MHz Span                    |    |
| Plot 30. Inband Radiated Spurious, 5500 MHz, 802.11a Bandwidth                                   |    |
| Plot 31. Inband Radiated Spurious, 5700 MHz, 802.11a Bandwidth                                   | 38 |
| Plot 32. Conducted Receiver Spurious Emission, 30 MHz – 1 GHz                                    | 40 |
| Plot 33. Conducted Receiver Spurious Emission, 1 GHz – 18 GHz                                    | 40 |
| Plot 34. Conducted Receiver Spurious Emission, 18 GHz – 26 GHz                                   | 41 |
| Plot 35 Radiated Receiver Spurious Emission, 30 MHz - 1 GHz                                      |    |
| Plot 36. Radiated Receiver Spurious Emission, 1 GHz - 18 GHz                                     | 43 |
| Plot 37. Radiated Receiver Spurious Emission, 18 GHz – 26.5 GHz                                  |    |
| Plot 38. Bin 1 Radar Calibration                                                                 |    |
| Plot 39. Move Time, 10 Second Span, 802.11a Bandwidth                                            |    |
| Plot 40. Close Time, 10 Second Span, 802.11a Bandwidth with Markers                              |    |
| Plot 41. Close Time, 1 Second Span, 802.11a Bandwidth                                            | 58 |
|                                                                                                  |    |



### **List of Terms and Abbreviations**

| AC         | Alternating Current                                                                                                     |
|------------|-------------------------------------------------------------------------------------------------------------------------|
| ACF        | Antenna Correction Factor                                                                                               |
| Cal        | Calibration                                                                                                             |
| d          | Measurement Distance                                                                                                    |
| dB         | Decibels                                                                                                                |
| dBμA       | Decibels above one microamp                                                                                             |
| dBμV       | Decibels above one microvolt                                                                                            |
| dBμA/m     | Decibels above one microamp per meter                                                                                   |
| dBμV/m     | Decibels above one microvolt per meter                                                                                  |
| DC         | Direct Current                                                                                                          |
| E          | Electric Field                                                                                                          |
| DSL        | Digital Subscriber Line                                                                                                 |
| ESD        | Electrostatic Discharge                                                                                                 |
| EUT        | Equipment Under Test                                                                                                    |
| fc         | Carrier Frequency                                                                                                       |
| CISPR      | Comite International Special des Perturbations Radioelectriques (International Special Committee on Radio Interference) |
| GRP        | Ground Reference Plane                                                                                                  |
| Н          | Magnetic Field                                                                                                          |
| НСР        | Horizontal Coupling Plane                                                                                               |
| Hz         | Hertz                                                                                                                   |
| IEC        | International Electrotechnical Commission                                                                               |
| kHz        | kiloHertz                                                                                                               |
| kPa        | kiloPascal                                                                                                              |
| kV         | kilovolt                                                                                                                |
| LISN       | Line Impedance Stabilization Network                                                                                    |
| MHz        | MegaHertz                                                                                                               |
| μΗ         | microHenry                                                                                                              |
| μ <b>F</b> | microFarad                                                                                                              |
| μs         | microseconds                                                                                                            |
| PRF        | Pulse Repetition Frequency                                                                                              |
| RF         | Radio Frequency                                                                                                         |
| RMS        | Root-Mean-Square                                                                                                        |
| V/m        | Volts per meter                                                                                                         |
| VCP        | Vertical Coupling Plane                                                                                                 |



# I. Requirements Summary



#### A. Requirements Summary

| ETSI EN 301 893 | Descriptive Name                                         | Compliance |    |                     | Comments                         |
|-----------------|----------------------------------------------------------|------------|----|---------------------|----------------------------------|
| Section Number  | Descriptive Name                                         | Yes        | No | N/A                 | Comments                         |
| Sections 4.2    | Carrier Frequencies                                      | ✓          |    |                     | No anomalies noted.              |
| Sections 4.3    | Nominal Channel Bandwidth and Occupied Channel Bandwidth | ✓          |    |                     | No anomalies noted.              |
|                 | RF Output Power                                          | ✓          |    |                     | No anomalies noted.              |
| Sections 4.4    | Transmit Power Control (TPC)                             | ✓          |    |                     | No anomalies noted.              |
|                 | Power Density                                            | ✓          |    |                     | No anomalies noted.              |
| Sections 4.5    | Transmitter Unwanted Emissions                           |            |    |                     |                                  |
| 4.5.1           | Out of Band Unwanted Emissions - Conducted               | ✓          |    |                     | No anomalies noted.              |
| 7.3.1           | Out of Band Unwanted Emissions  - Radiated               | ✓          |    |                     | No anomalies noted.              |
| 4.5.2           | In Band Unwanted Emissions – Conducted                   | ✓ No ar    |    | No anomalies noted. |                                  |
| 1.0.2           | In Band Unwanted Emissions – Radiated                    |            |    |                     | No anomalies noted.              |
| Sections 4.6    | Receiver Spurious<br>Emissions – Conducted               | ✓ No       |    | No anomalies noted. |                                  |
| Sections 1.0    | Receiver Spurious<br>Emissions – Conducted               | ✓          |    |                     | No anomalies noted.              |
| Sections 4.7    | Dynamic Frequency Selection (DFS                         | )          |    |                     |                                  |
|                 | DFS Calibration                                          | ✓          |    |                     | Compliant                        |
| 4.7             | DFS Bandwidth                                            |            |    | ✓                   | Not Applicable for Client Device |
| 4.7.2.1         | Channel Availability Check                               |            |    | ✓                   | Not Applicable for Client Device |
| 4.7.2.2         | Off Channel CAC                                          |            |    | ✓                   | Not Applicable for Client Device |
| 4.7.2.3         | In-Service Monitoring                                    |            |    | ✓                   | Not Applicable for Client Device |
| 4.7.2.4         | Channel Shutdown                                         | ✓          |    |                     | Compliant                        |
| 4.7.2.5         | Non-Occupancy Period                                     | <b>✓</b>   |    | ✓                   | Not Applicable for Client Device |
| Sections 4.8    | Medium Access Protocol                                   | ✓          |    |                     | Compliant                        |
| Sections 4.9    | User Access Restrictions                                 | ✓          |    |                     | Compliant                        |

Table 1. Summary of EMC ETSI EN 301 893 Compliance Testing



# II. Equipment Configuration



#### A. Overview

MET Laboratories, Inc. was contracted by Ubiquiti Networks to perform testing on a NS5L.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Ubiquiti Networks model NS5L.

The results obtained relate only to the item(s) tested.

| Model(s) Tested:                      | NS5L                                   |
|---------------------------------------|----------------------------------------|
| Model(s) Number:                      | NS5L                                   |
| FUT Chasifications                    | Primary Power: POE Adapter (120V/230V) |
| EUT Specifications:                   | Secondary Power: N/A                   |
|                                       | Temperature: 15-35° C                  |
| Lab Ambient (Normal) Test Conditions: | Relative Humidity: 30-60%              |
|                                       | Atmospheric Pressure: 860-1060 mbar    |
|                                       | Voltage: 230 VAC +/- 15%               |
| <b>Extreme Test Conditions:</b>       | Temperature: -20 to +55° C             |
|                                       | Relative Humidity: 30-60%              |
| Evaluated by:                         | Minh Ly                                |
| Report Date(s):                       | May 20, 2010                           |

#### B. References

| ETSI EN 301.893  | Broadband Radio Access Networks (BRAN); 5GHz high                                                      |
|------------------|--------------------------------------------------------------------------------------------------------|
| V1.5.1 (2008-12) | performance RLAN; Harmonized EN covering essential requirements of article 3.2 of the R&TTE Directive. |

**Table 2. Test References** 



#### C. Test Site

All testing was performed at MET Laboratories, Inc., 3162 Belick St., Santa Clara, CA 95054. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

#### **D.** Description of Test Sample

The NS5L, Equipment Under Test (EUT), is an outdoor PtP CPE.

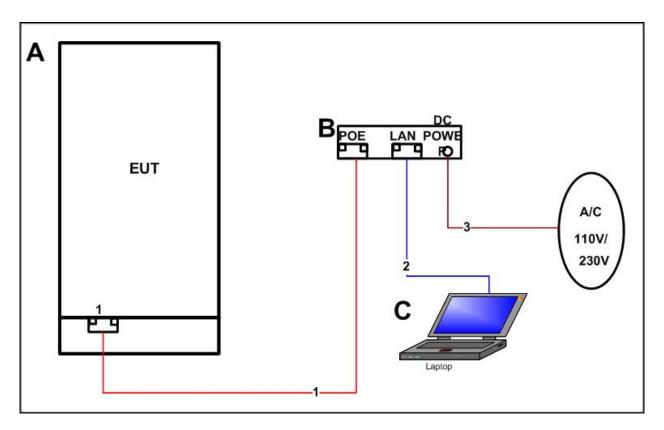



Figure 1. Block Diagram of Test Configuration 1



#### E. Equipment Configuration

The EUT was set up as outlined in Figure 1, Block Diagram of Test Setup. All cards, racks, etc., incorporated as part of the EUT is included in the following list.

| Ref. ID               | Name / Description | Model Number | Part Number  |
|-----------------------|--------------------|--------------|--------------|
| A                     | N5SL-Radiated Unit | N5SL         | 00156DF2A6D3 |
| A N5SL-Conducted Unit |                    | N5SL         | 00156DF21302 |
| В                     | POE                | UB1-POE-15-8 | 0911-0034019 |

**Table 3. Equipment Configuration** 

#### F. Support Equipment

Ubiquiti Networks supplied support equipment necessary for the operation and testing of the NS5L. All support equipment supplied is listed in the following Support Equipment List.

| Ref. ID | Name / Description | Manufacturer | Model Number |
|---------|--------------------|--------------|--------------|
| С       | Laptop             | Dell         | Vostro 1510  |

**Table 4. Support Equipment** 

#### G. Ports and Cabling Information

| Ref.<br>ID | Port Name on EUT | Cable Description | Qty. | Length (m) | Shielded<br>(Y/N) | Termination<br>Point |
|------------|------------------|-------------------|------|------------|-------------------|----------------------|
| 1          | A, RJ45          | Ethernet          | 1    | 1          | Y                 | В                    |
| 2          | B, LAN           | Ethernet          | 1    | .1         | Y                 | С                    |
| 3          | C, DC Input      | Power Cord        | 1    | .5         | N                 | 100-240V AC<br>power |

**Table 5. Ports and Cabling Information** 



#### H. Mode of Operation

Use Atheros Radio Test Software.

#### I. Method of Monitoring EUT Operation

Ping Times out and does not return. Unit locks up requires power down is a fail.

#### J. Modifications

#### a) Modifications to EUT

No modifications were made to the EUT

#### b) Modifications to Test Standard

No modifications were made to the test standard.

#### K. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Ubiquiti Networks upon completion of testing.



# III. Conformance Requirements



#### 4.2 Centre Frequencies

Test Procedure:

Test Requirement(s): ETSI EN 301 893, Clause 5.3.2:

4.2.1 Definition

The centre frequency is the centre of the channel declared by the manufacturer as part of the declared channel plan(s).

**4.2.2** Limits

The actual centre frequency for any given channel declared by the manufacturer shall be maintained within the range  $f_c \pm 20$  ppm.

manitanieu witinii tile range 1<sub>c</sub> ± 20 ppii

The EUT was placed in an environmental chamber and the RF port was connected directly to a spectrum analyzer through an attenuator. Depending on which band was being investigated, the EUT was set to transmit at the  $f_c$  indicated above at a normal power level. If the EUT was capable of transmitting a CW carrier then the spectrum analyzer's frequency counting function was used to measure the actual frequency. If only a modulated carrier was available then the frequency relative to -10dBc above and below the carrier was measured and the carrier frequency was determined using (f1+f2)/2. The frequency of the carrier was measured at normal and extreme conditions. The resulting

carrier frequencies were tabulated below and the frequency error determined.

**Test Results:** The EUT was found to be compliant with the limits set forth in Clause 5.3.2. No

anomalies noted.

**Test Engineer:** Minh Ly

**Test Date:** 04/21/10 - 04/22/10



| (5500MHz)                |              |                   |                 |        |  |  |  |
|--------------------------|--------------|-------------------|-----------------|--------|--|--|--|
|                          | Voltage (AC) | Temperature ( C ) | Frequency (MHz) | PPM    |  |  |  |
|                          | 207          | 70                | 5500.139550     | 17.473 |  |  |  |
| Reference @ 230VAC 20C   | 230          | 70                | 5500.137890     | 17.171 |  |  |  |
| Reference @ 250 v AC 20C | 253          | 70                | 5500.138350     | 17.254 |  |  |  |
|                          | 207          | 20                | 5500.043000     | 0.082  |  |  |  |
|                          | 230          | 20                | 5500.043450     | 0.000  |  |  |  |
|                          | 253          | 20                | 5500.043900     | 0.082  |  |  |  |
| 5500.043450              | 207          | -20               | 5499.960750     | 15.036 |  |  |  |
| 3300.043430              | 230          | -20               | 5499.961130     | 14.967 |  |  |  |
|                          | 253          | -20               | 5499.960830     | 15.022 |  |  |  |
|                          | (570         | 0MHz)             |                 |        |  |  |  |
|                          | Voltage (AC) | Temperature ( C ) | Frequency (MHz) | PPM    |  |  |  |
|                          | 207          | 70                | 5700.144210     | 15.152 |  |  |  |
| Reference @ 230VAC 20C   | 230          | 70                | 5700.143620     | 15.049 |  |  |  |
| Kelefence @ 230 v AC 20C | 253          | 70                | 5700.142940     | 14.930 |  |  |  |
|                          | 207          | 20                | 5700.056120     | 0.302  |  |  |  |
|                          | 230          | 20                | 5700.057840     | 0.000  |  |  |  |
|                          | 253          | 20                | 5700.059452     | 0.283  |  |  |  |
| 5700.057840              | 207          | -20               | 5699.959410     | 17.268 |  |  |  |
| 3/00.03/840              | 230          | -20               | 5699.959350     | 17.279 |  |  |  |
|                          | 253          | -20               | 5699.959150     | 17.314 |  |  |  |

**Table 6. Carrier Frequencies, Test Results** 



#### 4.3 Nominal Channel Bandwidth and Occupied Channel Bandwidth

Test Requirement(s): ETSI EN 301 893, Clause 5.3.3:

#### 4.3.1 Definition

The nominal channel bandwidth is the widest band of frequencies, inclusive of guard bands, assigned to a single channel.

The occupied channel bandwidth is the frequency bandwidth of the signal power at the -6 dBc points when measured with a 100 kHz resolution bandwidth.

NOTE: dBc is the spectral density relative to the maximum spectral power density of the transmitted signal.

#### 4.3.2 Limit

The nominal bandwidth shall be in the range from 5 MHz to 40 MHz.

The occupied channel bandwidth shall be between 80 % and 100 % of the declared nominal channel bandwidth. In case of smart antenna systems (devices with multiple transmit chains) each of the transmit chains shall meet this requirement.

NOTE: The limit for occupied bandwidth is not applicable for devices with a nominal bandwidth of 40 MHz when temporarily operating in a mode in which they transmit only in the upper or lower 20 MHz part of a 40 MHz channel (e.g. to transmit a packet in the upper or lower 20 MHz part of a 40 MHz channel).

**Test Procedure:** 

The transmitter was on and transmitting at the highest output power. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using a RBW approximately 1% of the total emission bandwidth, VBW > RBW. The 6 dB Bandwidth was measured and recorded. The measurements were performed on the low, mid and high channels.

In case of conducted measurements on smart antenna systems (devices with multiple transmit chains) measurements need only to be performed on one of the active transmit chains (antenna outputs).

**Test Results:** 

The EUT as tested was found compliant with the specified limits in clause 5.3.3. No anomalies noted.

unomanes notea.

**Test Engineer:** 

Anderson Soungpanya

**Test Date:** 04/21/10

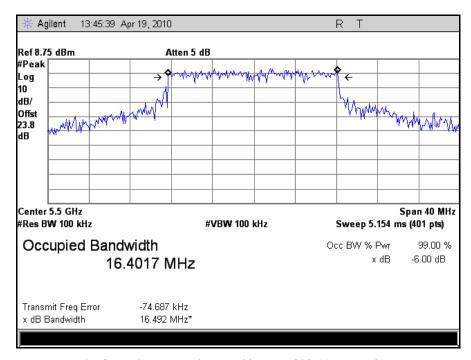
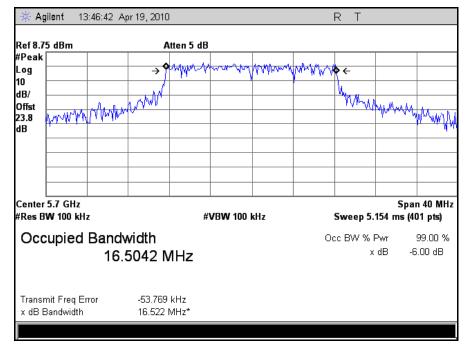





Figure 2. Occupied Bandwidth Test Setup





Plot 1. Occupied Bandwidth, 5500 MHz, 802.11a, Low Channel



Plot 2. Occupied Bandwidth, 5700 MHz, 802.11a, High Channel



#### 4.4 RF Output Power, Transmit Power Control (TPC), and Power Density

Test Requirement(s): ETSI EN 301 893, Clause 5.3.4:

#### 4.4.1 Definitions

#### 4.4.1.1 - RF Power

The RF output power is the mean equivalent isotropically radiated power (EIRP) during a transmission burst.

#### 4.4.1.2 – Transmit Power Control (TPC)

Transmit Power Control (TPC) is a mechanism to be used by the RLAN device to ensure a mitigation factor of at least 3 dB on the aggregate power from a large number of devices. This requires the RLAN device to have a TPC range from which the lowest value is at least 6 dB below the values for mean EIRP given in Table 7.

TPC is not required for channels whose nominal bandwidth falls completely within the band 5 150 MHz to 5 250 MHz.

#### 4.4.1.3 – Power Density

The power density is the mean Equivalent Isotropically Radiated Power (EIRP) density during a transmission burst.

#### **4.4.2 Limits**

The limits below are applicable to the system as a whole and in any possible configuration. This includes smart antenna systems (devices with multiple transmit chains).

#### 4.4.2.1 Limit: RF Output Power and Power Density at the Highest Power Level

For devices with TPC, the RF output power and the power density when configured to operate at the highest stated power level of the TPC range shall not exceed the levels given in Table 7.

For devices without TPC, the limits in Table 7 shall be reduced by 3 dB, except when operating on channels whose nominal bandwidth falls completely within the band 5 150 MHz to 5 250 MHz.

| Frequency range        | Mean EIRP limit   | Mean EIRP Density limit |
|------------------------|-------------------|-------------------------|
| 5 150 MHz to 5 350 MHz | 23 dBm            | 10 dBm/MHz              |
| 5 470 MHz to 5 725 MHz | 30 dBm (see Note) | 17 dBm/MHz (see note)   |

# Table 7. Mean EIRP Limits for RF Output Power and Power Density at the Highest Power Level

Note: For Slave devices without a Radar Interference Detection function the mean EIRP shall be less than 23 dBm and the mean EIRP density shall be less than 10 dBm/MHz.

#### 4.4.2.2 Limit: RF Output Power at the Lowest Power Level of the TPC Range

For devices using TPC, the RF output power during a transmission burst when configured to operate at the lowest stated power level of the TPC range shall not exceed the levels given in Table 8.



| Frequency range        | Mean EIRP limit   |  |  |
|------------------------|-------------------|--|--|
| 5 250 MHz to 5 350 MHz | 17 dBm            |  |  |
| 5 470 MHz to 5 725 MHz | 24 dBm (see Note) |  |  |

# Table 8. Mean EIRP Limits for RF Output Power at the Lowest Power Level of the TPC Range

Note: For Slave devices without a Radar Interference Detection function the mean EIRP shall be less than 17 dBm.

The limits in Table 8 do not apply for devices without TPC or when operating on channels whose nominal bandwidth falls completely within the band 5 150 MHz to 5 250 MHz.

#### **Test Procedures:**

#### **RF Output Power**

The EUT was connected directly to a spectrum analyzer capable of measuring the average RF power of a modulated carrier. Measurements were carried out in all modulations available. Frequency was at  $f_c$  of 5500MHz and 5700MHz for the Higher Sub-band. Both normal and extreme test conditions were observed.

The EIRP was determined from the equation  $P = A + G + 10 \log (1/x)$ ; where A is the measured power, x is the duty cycle and G is the antenna assembly gain.

#### **Transmit Power Control (TPC)**

The EUT was connected directly to a spectrum analyzer capable of measuring the average RF power of a modulated carrier. Measurements were carried out in all modulations available. Frequency was at  $f_c$  of 5500MHz and 5700MHz for the Higher Sub-band. Both normal and extreme test conditions were observed.

#### **Power Density**

The EUT was connected directly to a spectrum analyzer capable of measuring the average RF power of a modulated carrier. Measurements were carried out in all modulations available. Frequency was at  $f_c$  of 5500MHz and 5700MHz for the Higher Sub-band. The spectrum analyzer was initially set with a RBW and VBW of 1MHz and a span 3 times that of the carrier width. The max hold function was used to determine the frequency which gave the maximum value across the occupied band of the carrier. The spectrum analyzer was reset to use the power density function at the frequency found previously. The power density was then measured over 1MHz resolution.

In case of conducted measurements on smart antenna systems operating in a mode with multiple transmit chains active simultaneously, the output power of each transmit chain shall be measured separately to calculate the total power for the UUT.

**Test Results:** The EUT as tested was found compliant with the specified limits in clause 5.3.4. No

anomalies noted.

**Test Engineer:** Anderson Soungpanya

**Test Date:** 04/21/10

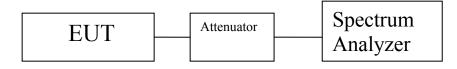
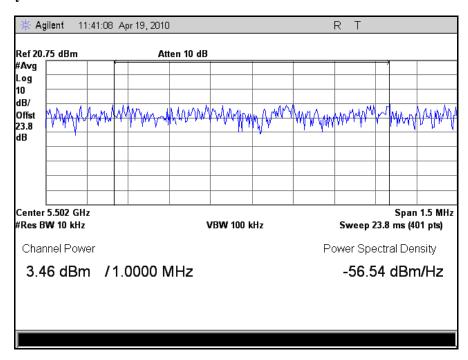



Figure 3. Output Power, TPC, and Power Density Test Setup

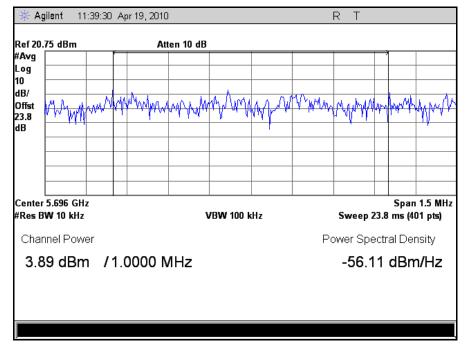


#### **Effective Isotropic Radiated Power Results**

| Maximum Average Power Under Normal and Extreme Conditions |                    |                  |                             |                          |               |                |
|-----------------------------------------------------------|--------------------|------------------|-----------------------------|--------------------------|---------------|----------------|
| Frequency<br>(MHz)                                        | Temperature<br>(C) | Voltage<br>(VDC) | Conducted<br>Power<br>(dBm) | Antenna<br>Gain<br>(dBi) | EIRP<br>(dBi) | Limit<br>(dBi) |
| 5500                                                      | 22                 | 230              | 8.85                        | 13                       | 21.85         | 30             |
| 5500                                                      | -20                | 207              | 9.81                        | 13                       | 22.81         | 30             |
| 5500                                                      | -20                | 253              | 9.87                        | 13                       | 22.87         | 30             |
| 5500                                                      | 70                 | 207              | 8.12                        | 13                       | 21.12         | 30             |
| 5500                                                      | 70                 | 253              | 8.13                        | 13                       | 21.13         | 30             |
| 5700                                                      | 22                 | 230              | 9.24                        | 13                       | 22.24         | 30             |
| 5700                                                      | -20                | 207              | 9.83                        | 13                       | 22.83         | 30             |
| 5700                                                      | -20                | 253              | 9.81                        | 13                       | 22.81         | 30             |
| 5700                                                      | 70                 | 207              | 8.46                        | 13                       | 21.46         | 30             |
| 5700                                                      | 70                 | 253              | 8.42                        | 13                       | 21.42         | 30             |


Table 9. RF Output Power, Test Results, 802.11a

|                    | Minimum Average Power Under Normal and Extreme Conditions |                  |                             |                          |               |                |
|--------------------|-----------------------------------------------------------|------------------|-----------------------------|--------------------------|---------------|----------------|
| Frequency<br>(MHz) | Temperature<br>(C)                                        | Voltage<br>(VDC) | Conducted<br>Power<br>(dBm) | Antenna<br>Gain<br>(dBi) | EIRP<br>(dBi) | Limit<br>(dBi) |
| 5500               | 22                                                        | 230              | 3.13                        | 13                       | 16.13         | 24             |
| 5500               | -20                                                       | 207              | 3.84                        | 13                       | 16.84         | 24             |
| 5500               | -20                                                       | 253              | 3.83                        | 13                       | 16.83         | 24             |
| 5500               | 70                                                        | 207              | 2.63                        | 13                       | 15.63         | 24             |
| 5500               | 70                                                        | 253              | 2.62                        | 13                       | 15.62         | 24             |
| 5700               | 22                                                        | 230              | 2.88                        | 13                       | 15.88         | 24             |
| 5700               | -20                                                       | 207              | 3.42                        | 13                       | 16.42         | 24             |
| 5700               | -20                                                       | 253              | 3.44                        | 13                       | 16.44         | 24             |
| 5700               | 70                                                        | 207              | 2.32                        | 13                       | 15.32         | 24             |
| 5700               | 70                                                        | 253              | 2.33                        | 13                       | 15.33         | 24             |


Table 10. Transmit Power Control, Test Results, 802.11a



#### **Power Density**



Plot 3. Power Spectral Density, 5500 MHz, 802.11a, Low Channel



Plot 4. Power Spectral Density, 5700 MHz, 802.11a, High Channel



#### 4.5.1 Transmitter Unwanted Emissions Outside the 5GHz RLAN Bands (Conducted)

Test Requirement(s): EN 301 893, Clause 5.3.5:

#### 4.5.1.1 Definition

These are conducted radio frequency emissions outside the 5GHz RLAN bands when the RF output port is connected to a spectrum analyzer.

#### 4.5.1.2 Limit

The level of unwanted emissions shall not exceed the limits given below.

| Frequency range       | Maximum power ERP | Resolution Bandwidth |
|-----------------------|-------------------|----------------------|
| 30 MHz to 47 MHz      | -36dBm            | 100KHz               |
| 47 MHz to 74 MHz      | -54dBm            | 100KHz               |
| 74 MHz to 87,5 MHz    | -36dBm            | 100KHz               |
| 87,5 MHz to 118 MHz   | -54dBm            | 100KHz               |
| 118 MHz to 174 MHz    | -36dBm            | 100KHz               |
| 174 MHz to 230 MHz    | -54dBm            | 100KHz               |
| 230 MHz to 470 MHz    | -36dBm            | 100KHz               |
| 470 MHz to 862 MHz    | -54dBm            | 100KHz               |
| 862 MHz to 1 GHz      | -36dBm            | 100KHz               |
| 1 GHz to 5,15 GHz     | -30dBm            | 1MHz                 |
| 5,35 GHz to 5,47 GHz  | -30dBm            | 1MHz                 |
| 5,725 GHz to 26,5 GHz | -30dBm            | 1MHz                 |

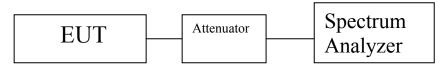
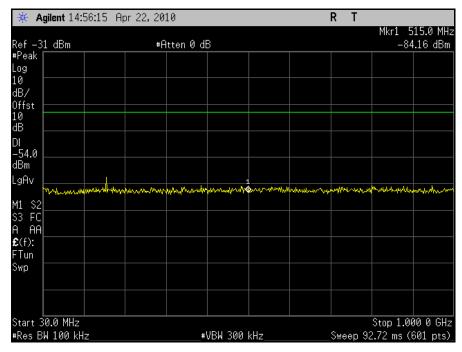
#### **Test Procedure:**

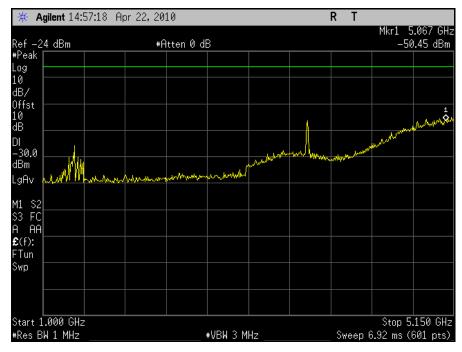
The EUT was connected directly to a spectrum analyzer through an attenuator. The spectrum analyzer was initially set to the peak hold function or video averaging. Emissions were investigated from 30MHz up to 26.5GHz. If any emission exceeded the limits in the table above then the spectrum analyzer was reset with a resolution of 100KHz, zero span, and the spectrum investigate at 11 frequencies spaced 100KHz in a band  $\pm$  0.5MHz centered on the failing frequency. The spectrum also was investigated from 1GHz to 5.15GHz, 5.35GHz to 5.47GHz and 5.725GHz to 26.5GHz using a resolution of 1MHz and a peak hold function or video averaging. Measurements were carried out in all modulations available. Frequency was at  $f_{\rm c}$  of 5500MHz and 5700MHz for the Higher Sub-band.

**Test Results:** The EUT as tested was found compliant with the specified requirements of Clause 5.3.5.

**Test Engineer:** Minh Ly

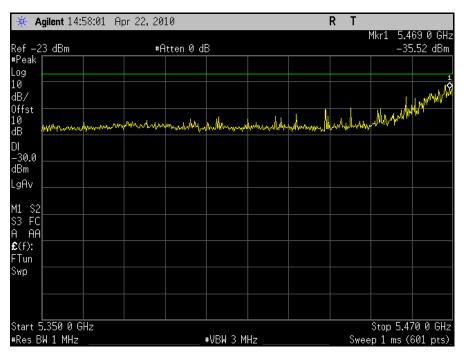
**Test Date:** 04/19/10

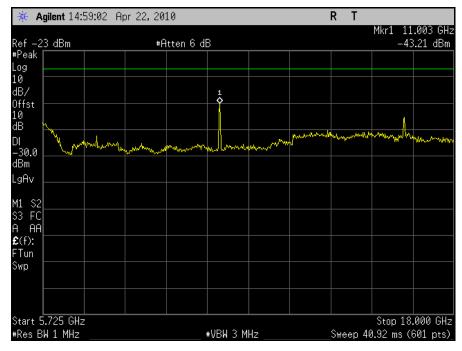


Figure 4. Unwanted Conducted Emissions Outside Test Setup



#### **Conducted Spurious Emissions Outside the 5GHz RLAN Bands**

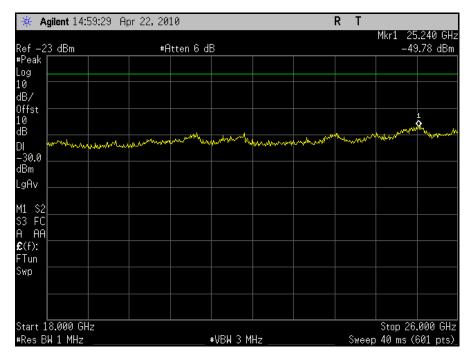



Plot 5. Out of Band Conducted Emissions, 5500 MHz, 802.11a Bandwidth, 30 MHz - 1 GHz

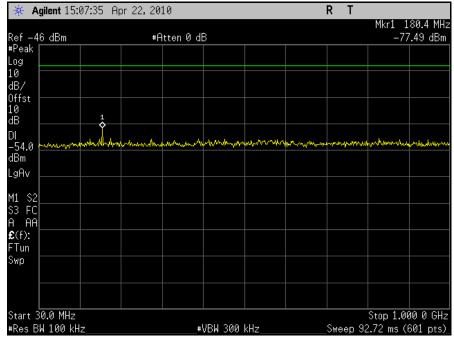



Plot 6. Out of Band Conducted Emissions, 5500 MHz, 802.11a Bandwidth, 1 GHz - 5.15 GHz



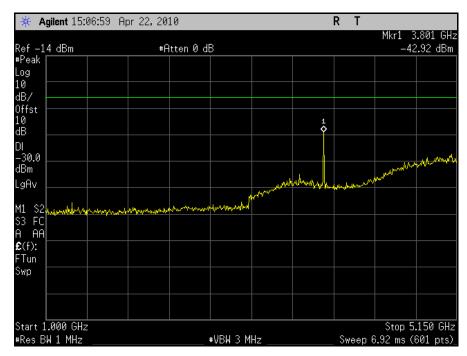



Plot 7. Out of Band Conducted Emissions, 5500 MHz, 802.11a Bandwidth, 5.35 GHz - 5.47 GHz

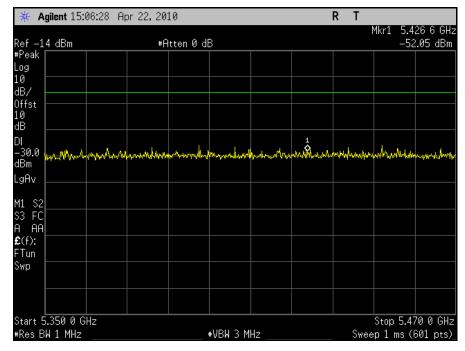



Plot 8. Out of Band Conducted Emissions, 5500 MHz, 802.11a Bandwidth, 5.725 GHz - 18 GHz






Plot 9. Out of Band Conducted Emissions, 5500 MHz, 802.11a Bandwidth, 18 GHz – 26 GHz

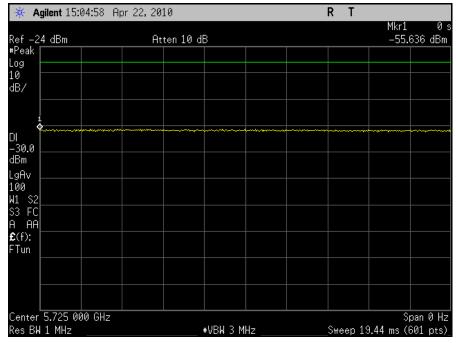



Plot 10. Out of Band Conducted Emissions, 5700 MHz, 802.11a Bandwidth, 30 MHz - 1 GHz



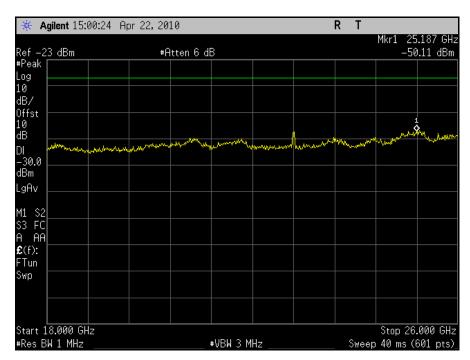



Plot 11. Out of Band Conducted Emissions, 5700 MHz, 802.11a Bandwidth, 1 GHz - 5.15 GHz




Plot 12. Out of Band Conducted Emissions, 5700 MHz, 802.11a Bandwidth, 5.35 GHz – 5.47 GHz






Plot 13. Out of Band Conducted Emissions, 5700 MHz, 802.11a Bandwidth, 5.725 GHz - 18 GHz



Plot 14. Out of Band Conducted Emissions, 5700 MHz, 802.11a Bandwidth, 5.725 GHz, Zero Span with Video Average





Plot 15. Out of Band Conducted Emissions, 5700 MHz, 802.11a Bandwidth, 18 GHz - 26 GHz



#### 4.5.1 Transmitter Unwanted Emissions Outside the 5GHz RLAN Bands (Radiated)

Test Requirement(s): EN 301 893, Clause 5.3.5

#### **4.5.1.1 Definition**

These are radiated radio frequency emissions outside the 5GHz RLAN bands when the RF output port is connected to a spectrum analyzer.

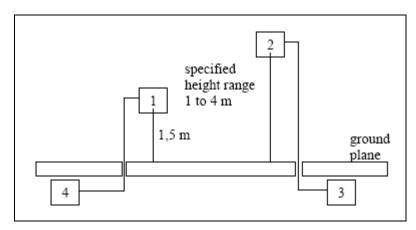
#### 4.5.1.2 Limit

The level of unwanted emissions shall not exceed the limits given

| Frequency range       | Maximum power ERP | Bandwidth |
|-----------------------|-------------------|-----------|
| 30 MHz to 47 MHz      | -36dBm            | 100KHz    |
| 47 MHz to 74 MHz      | -54dBm            | 100KHz    |
| 74 MHz to 87,5 MHz    | -36dBm            | 100KHz    |
| 87,5 MHz to 118 MHz   | -54dBm            | 100KHz    |
| 118 MHz to 174 MHz    | -36dBm            | 100KHz    |
| 174 MHz to 230 MHz    | -54dBm            | 100KHz    |
| 230 MHz to 470 MHz    | -36dBm            | 100KHz    |
| 470 MHz to 862 MHz    | -54dBm            | 100KHz    |
| 862 MHz to 1 GHz      | -36dBm            | 100KHz    |
| 1 GHz to 5,15 GHz     | -30dBm            | 1MHz      |
| 5,35 GHz to 5,47 GHz  | -30dBm            | 1MHz      |
| 5,725 GHz to 26,5 GHz | -30dBm            | 1MHz      |

**Test Procedure:** 

The EUT was setup as per the specifications set out in Annex B of 301 893 and is shown




- 1. Equipment Under Test
- 2. Test Antenna
- 3. Spectrum Analyzer



The antenna ports were terminated into a  $50\Omega$  load. The receiving antenna was connected directly to a spectrum analyzer through an RF pre-amplifier. The spectrum analyzer were initially set to the peak hold function or video averaging. Emissions were investigated from. If any emission exceeded the limits in the table above then the spectrum analyzer was reset with a resolution of 100 KHz, zero span, and the spectrum investigate at 11 frequencies spaced 100 KHz in a band  $\pm 0.5 \text{MHz}$  centered on the failing frequency. The spectrum also was investigated from 1 GHz to 5.15 GHz, 5.35 GHz to 5.47 GHz and 5.725 GHz to 26.5 GHz using a resolution of 1 MHz and a peak hold function or video averaging. The turntable was rotated about  $360^{\circ}$  and the receiving antenna raised and lowered 1-4m in order to determine the maximum emissions. Measurements were carried out in all modulations available. Frequency were at  $f_c$  of 5500 MHz and 5700 MHz for the Higher Sub-band.

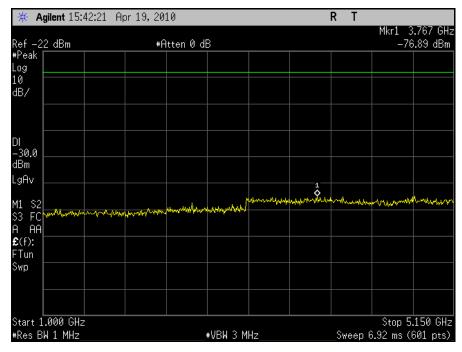
The levels of emissions were then determined using a signal substitution method and the setup is shown below.



- 1. Substitution Antenna
- 2. Test Antenna
- 3. Spectrum Analyzer
- 4. Signal Generator

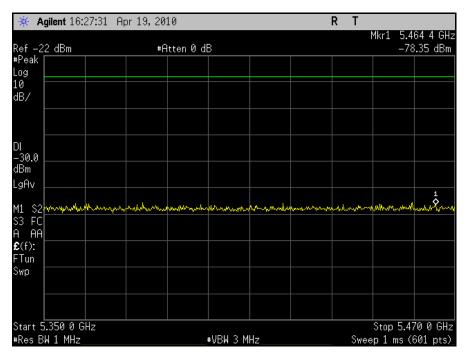
**Test Results:** The EUT as tested was found compliant with the specified requirements of Clause 5.3.5.

**Test Engineer:** Minh Ly

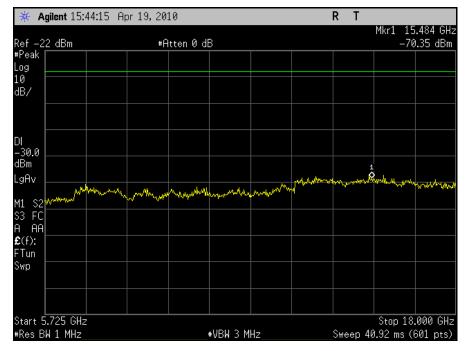

**Test Date:** 04/19/10



#### **Radiated Spurious Emissions**




Plot 16. Out of Band Radiated Emissions, 5500 MHz, 802.11a Bandwidth, 30 MHz - 1 GHz

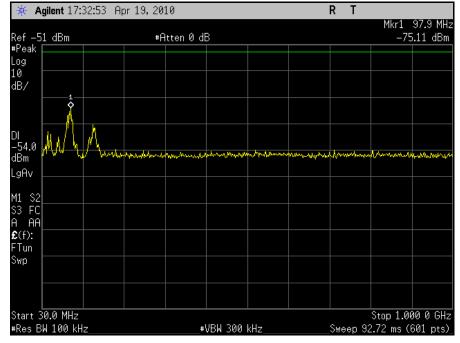



Plot 17. Out of Band Radiated Emissions, 5500 MHz, 802.11a Bandwidth, 1 GHz - 5.15 GHz



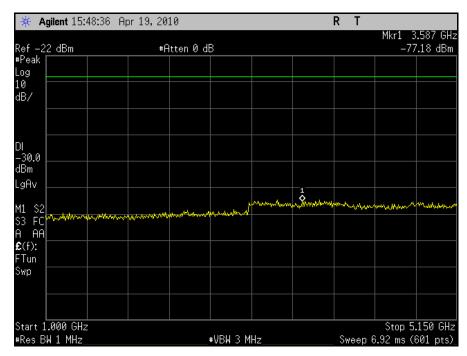


Plot 18. Out of Band Radiated Emissions, 5500 MHz, 802.11a Bandwidth, 5.35 GHz – 5.47 GHz

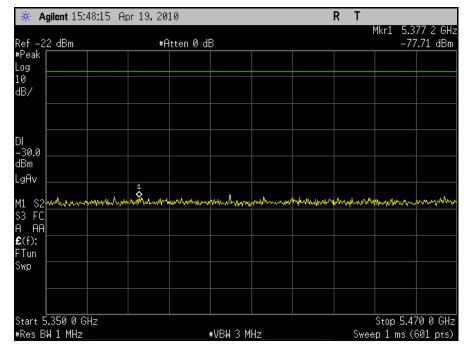



Plot 19. Out of Band Radiated Emissions, 5500 MHz, 802.11a Bandwidth, 5.725 GHz - 18 GHz



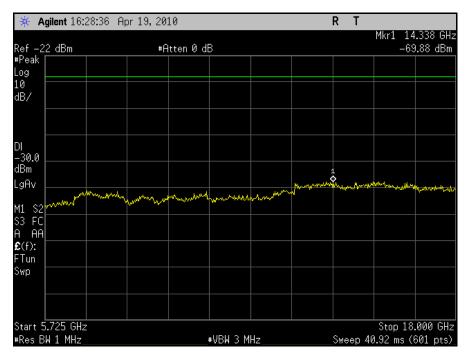



Plot 20. Out of Band Radiated Emissions, 5500 MHz, 802.11a Bandwidth, 18 GHz – 26 GHz

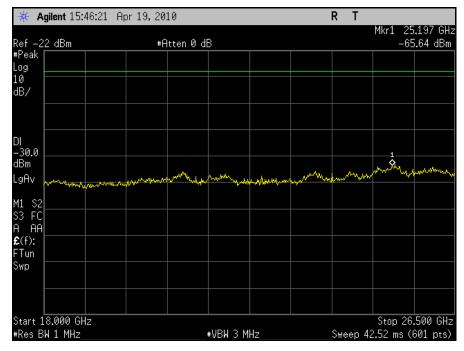



Plot 21. Out of Band Radiated Emissions, 5700 MHz, 802.11a Bandwidth, 30 MHz - 1 GHz





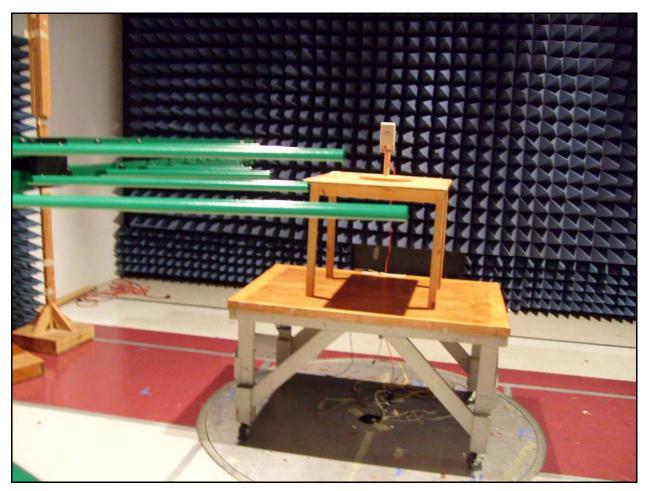

Plot 22. Out of Band Radiated Emissions, 5700 MHz, 802.11a Bandwidth, 1 GHz - 5.15 GHz




Plot 23. Out of Band Radiated Emissions, 5700 MHz, 802.11a Bandwidth, 5.35 GHz – 5.47 GHz

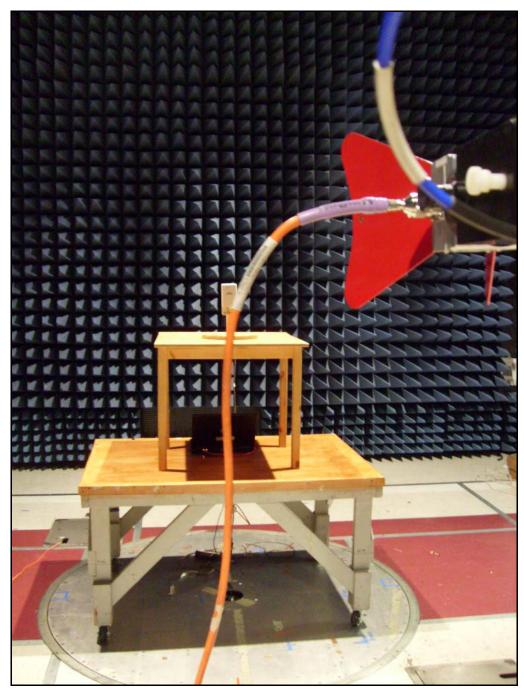





Plot 24. Out of Band Radiated Emissions, 5700 MHz, 802.11a Bandwidth, 5.725 GHz - 18 GHz



Plot 25. Out of Band Radiated Emissions, 5700 MHz, 802.11a Bandwidth, 18 GHz – 26 GHz




# **Radiated Emissions Test Setup Photographs**



Photograph 1. Radiated Emissions Setup, 30 MHz – 1 GHz

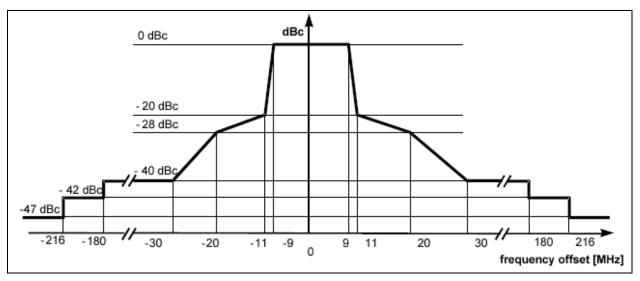




Photograph 2. Radiated Emissions Setup, Above 1 GHz



# 4.5.2 Transmitter Unwanted Emissions Within the 5GHz RLAN Bands (Conducted)


### Test Requirement(s): EN 301 893, Clause 5.3.6:

### 4.5.2.1 Definition

These are conducted radio frequency emissions within the 5GHz RLAN bands when the RF output port is connected to a spectrum analyzer.

### 4.5.2.2 Limit

The average level of the transmitted spectrum within the 5GHz RLAN bands shall not exceed the limits given below.



Note: dBc is the spectral density relative to the maximum spectral power density of the transmitted signal.



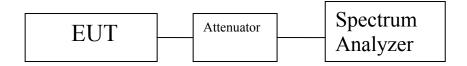
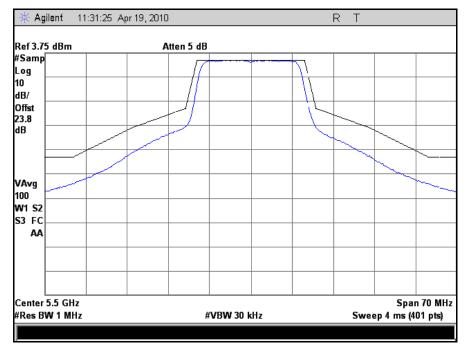
**Test Procedure:** 

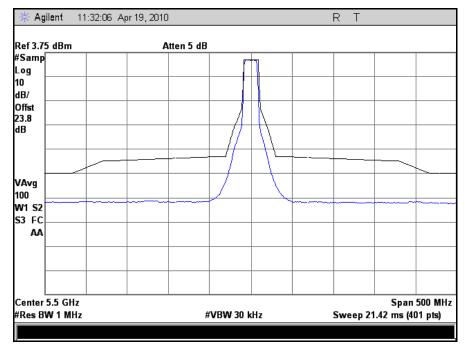
The maximum spectral power density of the EUT's transmitted signal was determined using a broadband power meter capable of measuring the average power of a modulated carrier. The EUT was then connected to a spectrum analyzer with a RBW of 1MHz, a VBW of 30 KHz and with video averaging on. The level of the power density measured previously was then used to set the emission mask relative to the 0 dB reference level of the modulated carrier. Measurements were carried out in all modulations available. Frequency was at  $f_c$  of 5500MHz and 5700MHz for the Higher Sub-band. The spectrum under the mask was examined both in a relatively narrow span and a broader span in order to determine compliance.

In case of conducted measurements on smart antenna systems (devices with multiple transmit chains) measurements need only to be performed on one of the active transmit chains (antenna outputs).

**Test Results:** The EUT as tested was found compliant with the specified requirements of Clause 5.3.6.

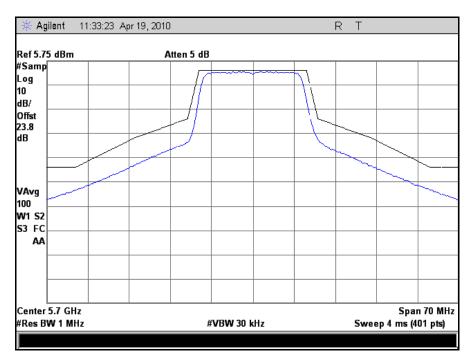
**Test Engineer:** Anderson Soungpanya

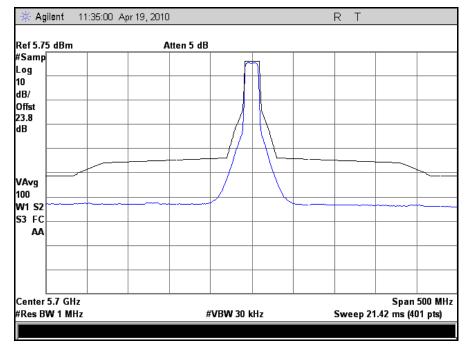


Figure 5. Unwanted Conducted Emissions Within Test Setup



# Transmitter Unwanted Emissions Within the 5GHz RLAN Bands (Conducted)




Plot 26. Inband Conducted Spurious, 5500 MHz, 802.11a Bandwidth, 70 MHz Span




Plot 27. Inband Conducted Spurious, 5500 MHz, 802.11a Bandwidth, 500 MHz Span





Plot 28. Inband Conducted Spurious, 5700 MHz, 802.11a Bandwidth, 70 MHz Span



Plot 29. Inband Conducted Spurious, 5700 MHz, 802.11a Bandwidth, 500 MHz Span



## 4.5.2 Transmitter Unwanted Emissions Within the 5GHz RLAN Bands (Radiated)

Test Requirement(s): EN 301 893, Clause 3.5.6:

### 4.5.2.1 Definition

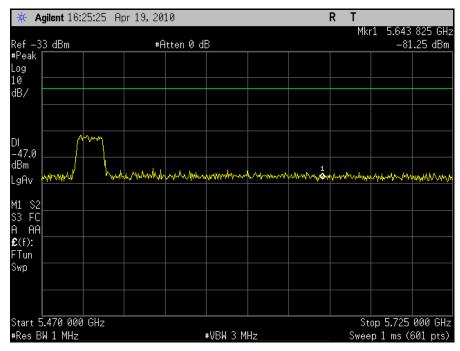
These are radiated radio frequency emissions within the 5GHz RLAN bands from the cabinet or structure when the EUT is in receive mode.

#### 4.5.2.2 Limit

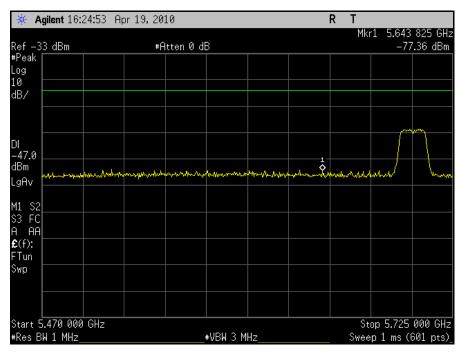
| Frequency Range      | Maximum Power,<br>ERP | Measurement<br>Bandwidth |  |
|----------------------|-----------------------|--------------------------|--|
| 5.470GHz to 5.725GHz | -47 dBm               | 1MHz                     |  |

**Test Procedure:** 

The EUT was setup as per section 4.4 above for measuring out of band radiated emissions. The spectrum within the 5GHz RLAN band was investigated for spurious emissions. Measurements were carried out in all modulations available. Frequency was at  $f_c$  of 5500MHz and 5700MHz for the Higher Sub-band.


In case of measurements on smart antenna systems (devices with multiple transmit chains) measurements need only to be performed on one of the active transmit chains (antenna outputs).

**Test Results:** The EUT as tested was found compliant with the specified requirements of Clause 5.3.6.


**Test Engineer:** Minh Ly



# Transmitter Unwanted Emissions Within the 5GHz RLAN Bands (Radiated)



Plot 30. Inband Radiated Spurious, 5500 MHz, 802.11a Bandwidth



Plot 31. Inband Radiated Spurious, 5700 MHz, 802.11a Bandwidth



# 4.6 Receiver Spurious Emissions (Conducted)

**Test Requirement(s):** EN 301 893V1.4.1, Clause 5.3.7:

### 4.6.1 Definition

Receiver spurious emissions are emissions at any frequency when the equipment is in received mode.

### 4.6.2 Limit

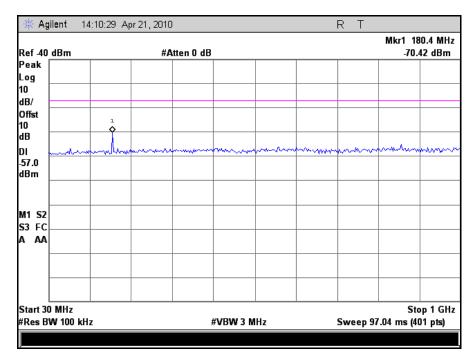
The spurious emissions of the receiver shall not exceed the values in table below.

| Frequency Range         | Maximum Power,<br>ERP | Measurement<br>Bandwidth |  |
|-------------------------|-----------------------|--------------------------|--|
| 30 MHz to 1 GHz         | -57 dBm               | 100KHz                   |  |
| above 1 GHz to 26.5 GHz | -47 dBm               | 1MHz                     |  |

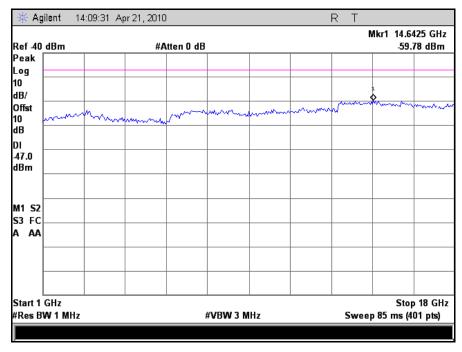
### **Test Procedure:**

Two EUTs were setup to communicate with each other. A test transmission sequence as shown below was used to send data between the two units. A directional coupler was used to isolate the emission measurements from the test data signal while the EUT received test data. The spectrum analyzer was initially set with a RBW of 1MHz or 100KHz and a VBW of 1MHZ using video averaging or peak hold. The Frequency was scanned from 30MHz to 26.5GHz.

**Test Results:** The EUT as tested was found compliant with the specified limits of Clause 5.3.7.

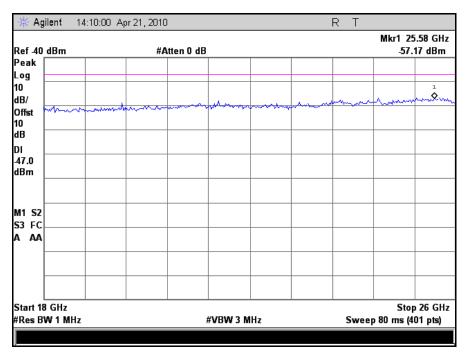

**Test Engineer:** Minh Ly




Figure 6. Receiver Spurious Emissions Test Setup



# **Receiver Spurious Emissions (Conducted)**




Plot 32. Conducted Receiver Spurious Emission, 30 MHz – 1 GHz



Plot 33. Conducted Receiver Spurious Emission, 1 GHz – 18 GHz





Plot 34. Conducted Receiver Spurious Emission, 18 GHz – 26 GHz



# 4.6 Receiver Spurious Emissions (Radiated)

Test Requirement(s): EN 301 893V1.4.1, Clause 5.3.7

#### 4.6.1 Definition

Receiver spurious emissions are emissions at any frequency when the equipment is in received mode.

### 4.6.2 Limit

The spurious emissions of the receiver shall not exceed the values in table below.

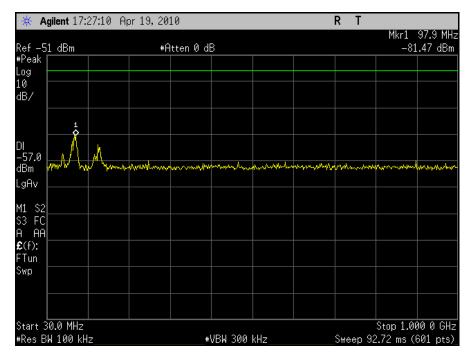
| Frequency Range         | Maximum Power,<br>ERP | Measurement<br>Bandwidth |  |
|-------------------------|-----------------------|--------------------------|--|
| 30 MHz to 1 GHz         | -57 dBm               | 100KHz                   |  |
| above 1 GHz to 26.5 GHz | -47 dBm               | 1MHz                     |  |

**Test Procedure:** The EUT was setup as per section 4.4 above for measuring out of band radiated

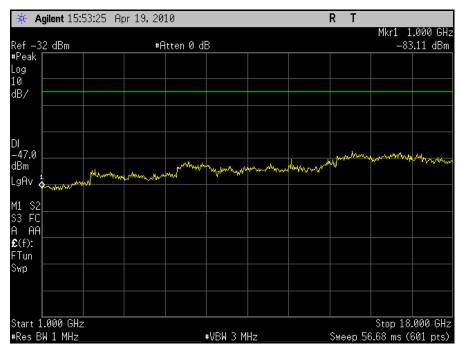
emissions. The EUT was set up to receive data. The spectrum within the 5GHz RLAN

band was investigated for spurious emissions.

**Test Results:** The EUT as tested was found compliant with the specified limits of Clause 5.3.7.

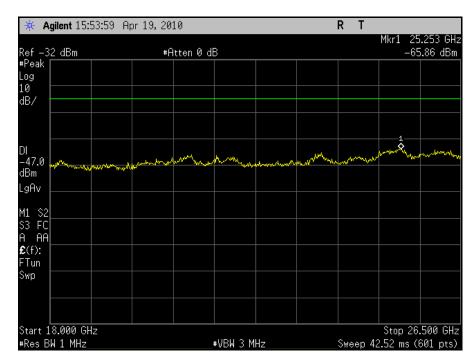

**Test Engineer:** Minh Ly




Figure 7. Receiver Spurious Emissions Test Setup



# **Receiver Spurious Emissions (Radiated)**




Plot 35 Radiated Receiver Spurious Emission, 30 MHz - 1 GHz



Plot 36. Radiated Receiver Spurious Emission, 1 GHz - 18 GHz





Plot 37. Radiated Receiver Spurious Emission, 18 GHz – 26.5 GHz



# 4.8 Medium Access Protocol

Test Requirement(s): EN 301 893, Section 4.8

4.8.1 Definition

A medium access protocol is a mechanism designed to facilitate spectrum sharing with

other devices in the wireless network.

4.8.2 Requirement

A medium access protocol shall be implemented by the equipment and shall be active

under all circumstances.

**Test Results:** The EUT as tested was found compliant with the specified limits.

**Test Engineer:** Minh Ly



# **Conformance Requirements**

### **4.9 User Access Restrictions**

Test Requirement(s): EN 301 893, Section 4.9

4.9.1 Definition

User Access Restrictions are restraints implemented in the RLAN to restrict access for the user to certain hardware and/or software settings of the equipment.

4.9.2 Requirement

DFS controls (hardware or software) related to radar detection shall not be accessible to the user so that the DFS requirements described in clauses 4.7.2.1 to 4.7.2.4 can neither be disabled nor altered.

**Test Results:** The EUT as tested was found compliant with the specified limits.

**Test Engineer:** Anderson Soungpanya



# **IV. DFS Requirements**



## 4.7 Dynamic Frequency Selection (DFS)

### 4.7.1 Introduction

An RLAN shall employ a Dynamic Frequency Selection (DFS) function to:

- detect interference from other systems and to avoid co-channel operation with these systems, notably radar systems (radar detection);
- provide on aggregate a uniform loading of the spectrum across all devices.

Radar detection is required when operating on channels whose nominal bandwidth falls partly or completely within the frequency ranges 5 250 MHz to 5 350 MHz or 5 470 MHz to 5 725 MHz. This requirement applies to all types of RLAN devices and to any type of communication between these devices.

In addition, equipment transmitting in the band 5600 - 5650MHz must also be able to detect meteorological radars employing non-constant pulse interval times. These are often referred to as staggered or interleaved PRFs (Pulse Repetition Frequencies) by which up to 3 different PRF values are used. The staggered radar bins from 301 893 v 1.5.1 were used to demonstrate compliance.

The DFS function as described in the present document is not tested for its ability to detect frequency hopping radar signals.

## 4.7.1.1 DFS operational modes

Within the context of the operation of the DFS function, an RLAN device shall operate in either master mode or slave mode. RLAN devices operating in slave mode (slave device) shall only operate in a network controlled by a RLAN device operating in master mode (master device).

Some RLAN devices are capable of communicating in ad-hoc manner without being attached to a network. Devices operating in this manner on channels whose nominal bandwidth falls partly or completely within the range 5 250 MHz to 5 350 MHz or 5 470 MHz to 5 725 MHz shall employ DFS and should be tested against the requirements applicable to a master.



### 4.7.1.2 DFS operation

The operational behavior and individual DFS requirements that are associated with master and slave devices are as follows:

### Master devices:

a) The master device shall use a Radar Interference Detection function in order to detect radar signals. b) Before initiating a network on a channel, which has not been identified as an Available Channel, the master device shall perform a Channel Availability Check to ensure that there is no radar operating on the channel. c) During normal operation, the master device shall monitor the Operating Channel (In-Service Monitoring) to ensure that there is no radar operating on the channel. d) If the master device has detected a radar signal during In-Service Monitoring, the Operating Channel is made unavailable. The master device shall instruct all its associated slave devices to stop transmitting on this (to become unavailable) channel. e) The master device shall not resume any transmissions on this Unavailable Channel during a period of time after a radar signal was detected. This period is referred as the Non-Occupancy Period.

### **Slave devices:**

f) A slave device shall not transmit before receiving an appropriate enabling signal from a master device. g) A slave device shall stop all its transmissions whenever instructed by a master device to which it is associated. The device shall not resume any transmissions until it has again received an appropriate enabling signal from a master device. h) A slave device which is required to perform radar detection (see table D.3), shall stop its own transmissions if it has detected a radar. The Operating Channel is made unavailable for the slave device. It shall not resume any transmissions on this Unavailable Channel for a period of time equal to the Non-Occupancy Period.

See Table 11 for the applicability of DFS requirements for each of the above mentioned operational modes. The master device may implement the Radar Interference Detection function referred to under a) using another device associated with the master. In such a case, the combination shall be tested against the requirements applicable to the master. The maximum power level of a slave device will define whether or not the device needs to have a Radar Interference Detection function (see table D.3).



### 4.7.2 DFS technical requirements specifications

Table 11 lists the DFS related technical requirements and their applicability for each of the operational modes described in clause 4.7.1. If the RLAN device is capable of operating in more than one operational mode described in clause 4.7.1 then each operating mode shall be assessed separately.

| Requirement                  | DFS Operational mode |                               |                            |  |  |
|------------------------------|----------------------|-------------------------------|----------------------------|--|--|
|                              | Master               | Slave without radar detection | Slave with radar detection |  |  |
| Channel Availability Check   | ✓                    | Not required                  | Not required (see Note 2)  |  |  |
| Off-Channel CAC (see Note 1) | ✓                    | Not required                  | ✓ (see Note 2)             |  |  |
| In-Service Monitoring        | ✓                    | Not required                  | ✓                          |  |  |
| Channel Shutdown             | ✓                    | ✓                             | ✓                          |  |  |
| Non-Occupancy Period         | ✓                    | Not required                  | ✓                          |  |  |
| Uniform Spreading            | ✓                    | Not required                  | Not required               |  |  |

Note 1: Where implemented by the manufacturer.

**Note 2:** Slave A slave with radar detection is not required to perform a CAC or Off-Channel CAC at initial use of the channel but only after the slave has detected a radar signal on the Operating Channel by In-Service Monitoring.

Table 11. Applicability of DFS requirements



### **DFS Detection Thresholds**

| EIRP Spectral Density | Value (see Notes 1 and 2) |
|-----------------------|---------------------------|
| 10 dBm/MHz            | -62 dBm                   |

Note 1: This is the level at the input of the receiver with a maximum EIRP density of 10 dBm/MHz and assuming a 0 dBi receive antenna. For devices employing different EIRP spectral density and/or a different receive antenna gain G (dBi) the DFS threshold level at the receiver input follows the following relationship:

DFS Detection Threshold (dBm) = -62 + 10 - EIRP Spectral Density (dBm/MHz) + G (dBi), however the DFS threshold level shall not be lower than -64 dBm assuming a 0 dBi receive antenna gain.

Note 2: Slave devices with a maximum EIRP of less than 23 dBm do not have to implement radar detection.

Table 12. Interference Threshold values, Master or Client incorporating In-Service Monitoring

| Parameter                         | Value                   |
|-----------------------------------|-------------------------|
| Channel Availability Check Time   | 60 seconds (see Note 1) |
| Maximum Off-Channel CAC Time      | 4 hours (see Note 2)    |
| Non-occupancy period              | Minimum 30 minutes      |
| Channel Move Time                 | 10 seconds              |
| Channel Closing Transmission Time | 1 s                     |

**Note 1:** For channels whose nominal bandwidth falls completely or partly within the band 5 600 MHz to 5 650 MHz, the CAC Time shall be 10 minutes.

**Note 2:** For channels whose nominal bandwidth falls completely or partly within the band 5 600 MHz to 5 650 MHz, the Maximum Off-Channel cAC Time shall be 24 hours.

Table 13. DFS Requirement values

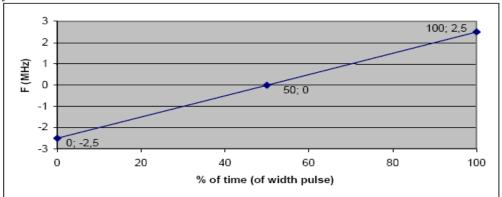
| Pulse width<br>W [μs] | Pulse repetition frequency PRF (PPS) | Pulses per burst (PPB) |  |
|-----------------------|--------------------------------------|------------------------|--|
| 1                     | 700                                  | 18                     |  |

Table 14. Parameters of the reference DFS test signal

|                       | Detection Probability (P <sub>d</sub> )                                                            |                |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------|----------------|--|--|
| Parameter             | Channels whose nominal bandwidth falls partly or completely within the 5 600 MHz to 5 650 MHz band | Other channels |  |  |
| CAC, Off-Channel CAC  | 99,99 %                                                                                            | 60 %           |  |  |
| In-Service Monitoring | 60 %                                                                                               | 60 %           |  |  |

**NOTE:**  $P_d$  gives the probability of detection per simulated radar burst and represents a minimum level of detection performance under defined conditions. Therefore  $P_d$  does not represent the overall detection probability for any particular radar under real life conditions.

**Table 15. Detection Probability** 




## **Required Radar Test Waveforms**

| Radar test<br>Signal # |     | Pulse repetition frequency   Number of   PRF (PPS)   different |       | Number of different | Pulses per burst for each PRF (PPB) |                 |  |
|------------------------|-----|----------------------------------------------------------------|-------|---------------------|-------------------------------------|-----------------|--|
| (see Notes 1 to 3)     | Min | Max                                                            | Min   | Max                 | PRFs                                | (see Note 5)    |  |
| 1                      | 0,8 | 5                                                              | 200   | 1 000               | 1                                   | 10 (see Note 6) |  |
| 2                      | 0,8 | 15                                                             | 200   | 1 600               | 1                                   | 15 (see Note 6) |  |
| 3                      | 0,8 | 15                                                             | 2 300 | 4 000               | 1                                   | 25              |  |
| 4                      | 20  | 30                                                             | 2 000 | 4 000               | 1                                   | 20              |  |
| 5                      | 0,8 | 2                                                              | 300   | 4000                | 2/3                                 | 10 (see Note 6) |  |
| 6                      | 0,8 | 2                                                              | 400   | 1 200               | 2/3                                 | 15 (see Note 6) |  |

NOTE 1: Radar test signals 1 to 4 are constant PRF based signals. These radar test signals are intended to simulate also radars using a packet based Staggered PRF.

NOTE 2: The modulation to be used for the radar test signal 4 is a chirp modulation with a  $\pm 2,5$ MHz frequency deviation which is described below.



NOTE 3: Radar test signals 5 and 6 are single pulse based Staggered PRF radar test signals using 2 or 3 different PRF values. For radar test signal 5, the difference between the PRF values chosen shall be between 20 pps and 50 pps. For radar test signal 6, the difference between the PRF values chosen shall be between 80 pps and 400 pps.

NOTE 4: Apart for the Off-Channel CAC testing, the radar test signals above shall only contain a single burst of pulses.

NOTE 5: The total number of pulses in a burst is equal to the number of pulses for a single PRF multiplied by the number of different PRFs used.

NOTE 6: For the CAC and Off-Channel CAC requirements, the minimum number of pulses (for each PRF) for any of the radar test signals to be detected in the band 5 600 MHz to 5 650 MHz shall be 18.

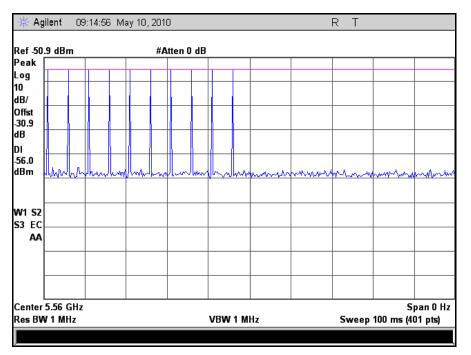
Table 16. EN 301 893 1.5.1 Radar Test Waveforms



### **Radar Waveform Calibration**

The following equipment setup was used to calibrate the conducted Radar Waveform See Figure 8. A spectrum analyzer was used to establish the test signal level for each radar type. During this process there were no transmissions by either the Master or Client Device. The spectrum analyzer was switched to the zero span (Time Domain) mode at the frequency of the Radar Waveform generator. Peak detection was utilized. The spectrum analyzer's resolution bandwidth (RBW) was set to 1MHz and the video bandwidth (VBW) was set to MHz. A 30dB preamplifier was used in during the calibration procedure





Figure 8. Radar Waveform Calibration Setup



Photograph 3. Radar Test Signal Generator



# **Radar Calibration**



Plot 38. Bin 1 Radar Calibration



# **Test Setup for EUT**

- 1. A spectrum analyzer is used as a monitor to verify that the UUT has vacated the Channel within the (Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the detection and Channel move. It is also used to monitor UUT transmissions during the Channel Availability Check Time.
- 2. Figure 9 shows the test setup used for injection of radar waveforms in to a slave device.

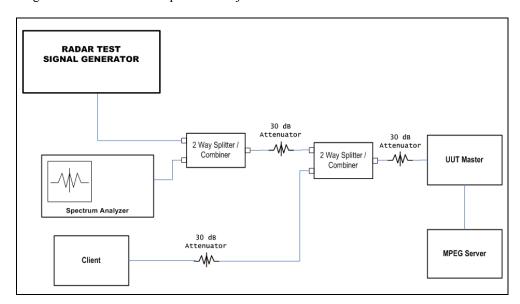



Figure 9. Test Setup for Slave Device



### 4.7.2.4 Channel Shutdown and 4.7.2.5 Non-Occupancy Period

Test Requirement(s): ETSI EN 301 893, Sections 4.7.2.4 & 4.7.2.5, Clause 5.3.8

**Definition:** 4.7.2.4.1

The *Channel Shutdown* is defined as the process initiated by the RLAN device immediately after a radar signal has been detected on an *Operating Channel*.

The master device shall instruct all associated slave devices to stop transmitting on this channel, which they shall do within the Channel Move Time.

Slave devices with a Radar Interference Detection function, shall stop their own transmissions within the Channel Move Time upon detecting a radar signal.

The aggregate duration of all transmissions of the RLAN device on this channel during the Channel Move Time shall be limited to the Channel Closing Transmission Time. The aggregate duration of all transmissions shall not include quiet periods in between transmissions.

#### 4.7.2.5.1

The *Non-Occupancy Period* is defined as the time during which the RLAN device shall not make any transmissions on a channel after a radar signal was detected on that channel by either the *Channel Availability Check* or the *In-Service Monitoring*.

### Limit(s): 4.7.2.4.2 & 4.7.2.5.2

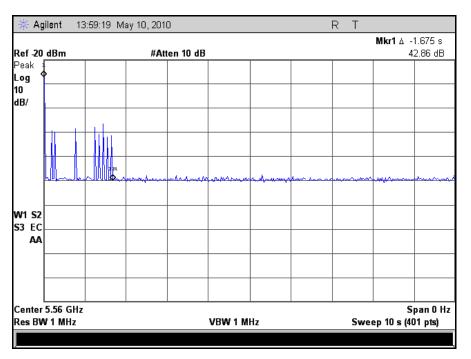
| Parameter                         | Limit  |
|-----------------------------------|--------|
| Channel Move Time                 | 10 s   |
| Channel Closing Transmission Time | 1 s    |
| Non-Occupancy Period              | 30 min |

**Test Procedure:** 

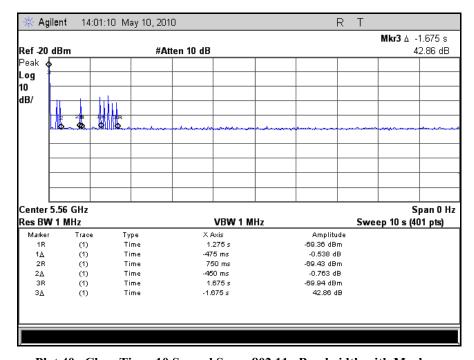
The EUT was connected as in Figure #10. The channel selection mechanism for the Uniform Spreading requirement is disabled on the master .

This EUT was tested as a slave device.

The measurement was performed using normal operation of the equipment. The reference bin at a level above 10 dB above the level of the EUT, was injected into the EUT at time  $T_0$ . The time  $T_1$  -  $T_0$  was recorded as the duration of the radar burst. At the end of time  $T_1$  the EUT was monitored for a period  $\geq 10s$  and the aggregate duration of all transmissions from the EUT were recorded. The difference between  $T_2$ , indicating the EUT had ceased all transmission, and  $T_1$  was recorded. If the EUT was a Master then the selected channel was observed for a period of 30 min to insure no transmissions reoccurred on that channel.

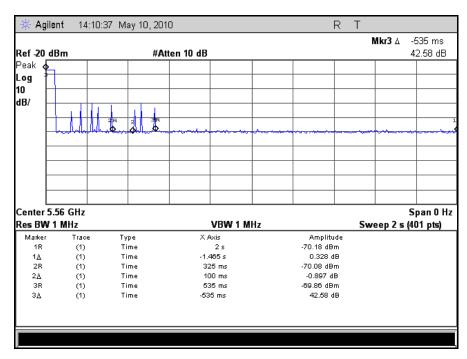

**Test Results:** The master did detect the presence of the Radar Signal and the slave EUT was able to

shut down and close the channel in the appropriate time allowed.

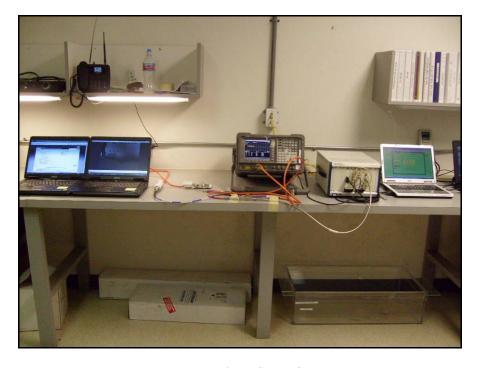

**Test Engineer:** Minh Ly

**Test Date(s):** 05/10/10






Plot 39. Move Time, 10 Second Span, 802.11a Bandwidth




Plot 40. Close Time, 10 Second Span, 802.11a Bandwidth with Markers





Plot 41. Close Time, 1 Second Span, 802.11a Bandwidth



Photograph 4. DFS Test Setup



# V. Test Equipment



# **Test Equipment**

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ANSI/NCSL Z540-1-1994 and ANSI/ISO/IEC 17025:2000.

| MET<br>Asset # | Equipment                           | Manufacturer      | Model     | Last Cal Date | Cal Due Date |
|----------------|-------------------------------------|-------------------|-----------|---------------|--------------|
| 1S2421         | EMI RECEIVER                        | ROHDE&SCHWARZ     | ESIB 7    | 05/27/2009    | 05/27/2010   |
| 1S2121         | PRE-AMPLIFIER                       | HEWLETT PACKARD   | 8449B     | SEE I         | NOTE         |
| 1S2198         | ANTENNA, HORN                       | EMCO              | 3115      | 09/03/2009    | 09/03/2010   |
| 1S2202         | ANTENNA, HORN, 1 METER              | EMCO              | 3116      | 04/23/2010    | 04/23/2013   |
| N/A            | HIGH PASS FILTER                    | MICRO-TRONICS     | HPM13146  | SEE 1         | NOTE         |
| 1S2041         | COUPLER, BI<br>DIRECTIONALCOAXIAL   | NARDA             | N/A       | SEE 1         | NOTE         |
| 1S2460         | ANALYZER, SPECTRUM 9<br>KHZ-40GHZ   | AGILENT           | E4407B    | 04/30/2010    | 04/30/2011   |
| 1S2034         | COUPLER, DIRECTIONAL 1-20<br>GHZ    | KRYTAR            | 101020020 | SEE NOTE      |              |
| 1S2512         | TRANSIENT LIMITER                   | AGILENT           | 11947A    | SEE I         | NOTE         |
| 1S2520         | THERMO-HYGROMETER                   | FISHER SCIENTIFIC | 11-661-7D | 11/11/2009    | 11/11/2010   |
| 1S2482         | CHAMBER, 5 METER                    | PANASHIELD        | 641431    | 10/16/2009    | 10/16/2010   |
| 1S2108         | RECIEVER, EMI, RF FILTER<br>SECTION | HEWLETT PACKARD   | 85460A    | 11/10/2009    | 11/10/2010   |
| 1S2399         | TURNTABLE CONTROLLER                | SUNOL SCIENCE     | SC99V     | SEE NOTE      |              |
| 1S2485         | BILOG ANTENNA                       | TESEQ             | CBL6112D  | 05/07/2010    | 05/07/2011   |
| 1S2041         | COUPLER, BI<br>DIRECTIONALCOAXIAL   | NARDA             | N/A       | SEE NOTE      |              |

Note: Functionally verified test equipment is verified using calibrated instrumentation at the time of testing.



| MET Asset | Equipment                                                     | Manufacturer            | Last Cal Date | Cal Due Date |
|-----------|---------------------------------------------------------------|-------------------------|---------------|--------------|
| 1S2243    | NI PXI-1042 8-SLOT 3U CHASSIS                                 | NATIONAL<br>INSTRUMENTS | SEE NOTE      |              |
| 1S2602    | NI PXI-5421 16-BIT 100MS/S<br>ARBITRARY WAVEFORM<br>GENERATOR | NATIONAL<br>INSTRUMENTS | SEE           | NOTE         |
| 1S2278    | NI PXI-5610 2.7GHZ RF<br>UPCONVERTER                          | NATIONAL<br>INSTRUMENTS | SEE           | NOTE         |
| 1S2069    | UPCONVERTER, 7206 PXI 4.9 TO<br>6GHZ                          | ASCOR                   | SEE NOTE      |              |
| N/A       | SPLITTER/COMBINER, ZFSC-2-9G<br>(QTY 2)                       | MINI-CIRCUITS           | SEE NOTE      |              |
| N/A       | 30DB ATTENUATOR, BW-S30W2 (QTY 2)                             | PASTERNAK               | SEE NOTE      |              |
| N/A       | 10DB ATTENUATOR, BW-S10W2 (QTY 2)                             | PASTERNAK               | SEE NOTE      |              |
| 1S2523    | PRE-AMPLIFIER, 8449B                                          | AGILENT                 | SEE NOTE      |              |
| 1S2583    | SPECTRUM ANALYZER, E4447A                                     | AGILENT                 | 01/26/2010    | 01/26/2011   |
| 1S2460    | SPECTRUM ANALYZER, E4407B                                     | AGILENT                 | 04/30/2010    | 04/30/2011   |

**Table 17. DFS Equipment List** 

Note: Functionally verified test equipment is verified using calibrated instrumentation at the time of testing.



# **End of Report**