

A sample of the following product received on May 11, 2011 and tested on May 11, 12, 13, 15 and 16, 2011 complied with the requirements of,

 RRA Notices 2010-5, 2011-5, 2010-6 and 2011-6 (KN22"Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement" (Class A) and KN24 "Information technology equipment – Immunity characteristics, Limits and method of measurement.")

given the measurement uncertainties detailed in Elliott report R83304.

Ubiquiti Networks Model AirCam

Wayne Fisher Engineering Team Lead

Ubiquiti Networks

Printed Name

Elliott Laboratories is accredited by the A2LA, certificate number 2016.01, to perform the test(s) listed in this certificate. This certificate shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

> Elliott Laboratories www.elliottlabs.com

41039 Boyce Road Fremont, CA. 94538 510-578-3500 Phone 510-440-9525 Fax

EMC Test Report

Class A Information Technology Equipment

RRA Notices 2010-5, 2011-5, 2010-6 and 2011-6 (KN22 and KN24)

Product Name: Security Camera

Model: AirCam

COMPANY:	Ubiquiti Networks 91 E. Tasman Drive San Jose, CA 95134
TEST SITE(S):	Elliott Laboratories 41039 Boyce Road Fremont, CA. 94538-2435
TEST LABORATORY ID #:	US0027
REPORT DATE:	May 26, 2011
FINAL TEST DATES:	May 11, 12, 13, 15 and 16, 2011

AUTHORIZED SIGNATORY:

Wayne Fisher Engineering Team Lead Elliott Laboratories, An NTS Company

Elliott Laboratories is accredited by the A2LA, certificate number 2016.01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	05-26-2011	First release	

TABLE OF CONTENTS

REVISION HISTORY	3
TABLE OF CONTENTS	4
SCOPE	6
OBJECTIVE	6
STATEMENT OF COMPLIANCE	6
DEVIATIONS FROM THE STANDARDS	
INFORMATION TECHNOLOGY EQUIPMENT EMISSIONS TEST RESULTS	
CONDUCTED EMISSIONS (MAINS PORT)	
RADIATED EMISSIONS	
INFORMATION TECHNOLOGY EQUIPMENT IMMUNITY TEST RESULTS	8
MEASUREMENT UNCERTAINTIES	9
EQUIPMENT UNDER TEST (EUT) DETAILS	10
GENERAL	
OTHER EUT DETAILS	
ENCLOSURE	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
EMISSIONS TESTING	12
RADIATED AND CONDUCTED EMISSIONS	12
RADIATED EMISSIONS CONSIDERATIONS	
CONDUCTED EMISSIONS CONSIDERATIONS	
EMISSIONS MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	14
ANTENNA MAST AND EQUIPMENT TURNTABLE	14
INSTRUMENT CALIBRATION	
EMISSIONS TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS (MAINS) CONDUCTED EMISSIONS (TELECOMMUNICATION PORTS)	
RADIATED EMISSIONS (SEMI-ANECHOIC AND/OR OATS TEST ENVIRONMENT)	13
Preliminary Scan.	
Final Maximization	
SAMPLE CALCULATIONS	17
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	17
SAMPLE CALCULATIONS - RADIATED EMISSIONS	17
IMMUNITY TESTING	18
GENERAL INFORMATION	18
IMMUNITY MEASUREMENT INSTRUMENTATION	18
ELECTROSTATIC DISCHARGE TEST SYSTEM	
ELECTROMAGNETIC FIELD TEST SYSTEM	
ELECTRICAL FAST TRANSIENT/BURST TEST SYSTEM	
SURGE TEST SYSTEM CONDUCTED INTERFERENCE TEST SYSTEM	
VOLTAGE VARIATION TEST SYSTEM	
INSTRUMENT CALIBRATION	

IMMUNITY TEST PROCEDURES	19
EQUIPMENT PLACEMENT	19
APPLICATION OF ELECTROSTATIC DISCHARGES	
APPLICATION OF ELECTROMAGNETIC FIELD	20
APPLICATION OF ELECTRICAL FAST TRANSIENTS	20
APPLICATION OF SURGES	
APPLICATION OF CONDUCTED INTERFERENCE	
APPLICATION OF VOLTAGE VARIATIONS	20
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	21
APPENDIX B TEST DATA	
APPENDIX C ESD TEST POINTS PHOTOGRAPHS	56
ESD TEST POINTS PHOTOGRAPHS – FRONT OF AIRCAM UNIT	
ESD TEST POINTS PHOTOGRAPHS – REAR OF AIRCAM UNIT	56
ESD TEST POINTS PHOTOGRAPHS – REAR OF AIRCAM UNIT	57
ESD TEST POINTS PHOTOGRAPHS – SIDES OF AIRCAM UNIT	57
ESD TEST POINTS PHOTOGRAPHS – SIDES OF AIRCAM UNIT	58
ESD TEST POINTS PHOTOGRAPHS – FRONT OF POE UNIT	
ESD TEST POINTS PHOTOGRAPHS – FRONT OF POE UNIT	
ESD TEST POINTS PHOTOGRAPHS – REAR OF POE UNIT	
ESD TEST POINTS PHOTOGRAPHS – REAR OF POE UNIT	
ESD TEST POINTS PHOTOGRAPHS – SIDES OF POE UNIT	
ESD TEST POINTS PHOTOGRAPHS – SIDES OF POE UNIT	
END OF REPORT	62

SCOPE

Governments and standards organizations around the world have published requirements regarding the electromagnetic compatibility (EMC) of electronic equipment. Testing has been performed on the Ubiquiti Networks model AirCam, pursuant to the following standards.

Standard	Title	Standard Date
KN22/KN24	RRA Notice 2010-5	2010
	RRA Notice 2011-5	2011
	RRA Notice 2010-6	2010
	RRA Notice 2011-6	2011

All measurements and evaluations have been in accordance with these specifications, test procedures, and measurement guidelines as outlined in Elliott Laboratories test procedures, and in accordance with the standards referenced therein

OBJECTIVE

The objective of Ubiquiti Networks is to:declare conformity with the requirements of the RRA for EMC of ITE equipment;

STATEMENT OF COMPLIANCE

The tested sample of Ubiquiti Networks model AirCam complied with the requirements of:

Standard/Regulation	Equipment Type/Class	Standard Date
KN22 and KN24	Class A	RRA Notices 2010-5, 2011-5, 2010-6, and 2011-6

The test results recorded herein are based on a single type test of the Ubiquiti Networks model AirCam and therefore apply only to the tested sample(s). The sample was selected and prepared by Jennifer Sanchez of Ubiquiti Networks.

Maintenance of compliance is the responsibility of the company. Any modification of the product that could result in increased emissions or susceptibility should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different enclosure, different line filter or power supply, harnessing and/or interface cable changes, etc.).

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

INFORMATION TECHNOLOGY EQUIPMENT EMISSIONS TEST RESULTS

The following emissions tests were performed on the Ubiquiti Networks model AirCam. The measurements were extracted from the data recorded during testing and represent the highest amplitude emissions relative to the specification limits. The complete test data is provided in the appendices of this report.

CONDUCTED EMISSIONS (MAINS PORT)

Frequency Range Operating Voltage	Standard/Section	Requirement	Measurement	Margin	Status
0.15-30 MHz, 110V, 50Hz	KN22	0.15-0.5 MHz: 79 dBµV QP 66 dBuV Av	37.0dBµV @ 19.709MHz	-23.0dB	Complied
0.15-30 MHz, 220V, 60Hz	(Class A)	66 dBµV Av 0.5-30 MHz: 73 dBµV QP 60 dBµV Av	54.1dBµV @ 0.169MHz	-24.9dB	Complied

Conducted Emissions 220V/60Hz								
	Frequency	Level	AC	KN22	Class A	Detector		
	MHz	dBμV	Line	Limit	Margin	QP/Ave		
1	19.709	37.0	Neutral	60.0	-23.0	AVG		
2	0.167	55.7	Neutral	79.0	-23.3	QP		
3	19.710	36.5	Line 1	60.0	-23.5	AVG		
4	0.174	55.0	Line 1	79.0	-24.0	QP		
5	0.151	54.0	Line 1	79.0	-25.0	QP		
6	0.159	52.8	Neutral	79.0	-26.2	QP		
7	0.167	33.0	Neutral	66.0	-33.0	AVG		
8	19.709	39.7	Neutral	73.0	-33.3	QP		
9	0.174	32.6	Line 1	66.0	-33.4	AVG		
10	19.710	39.2	Line 1	73.0	-33.8	QP		
11	0.151	31.1	Line 1	66.0	-34.9	AVG		
12	0.159	29.4	Neutral	66.0	-36.6	AVG		

RADIATED EMISSIONS

Frequency Range	Standard/Section	Requirement	Measurement	Margin	Status
30-1000 MHz	KN22 Class A	30 – 230, 40 dBµV/m 230 – 1000, 47 dBµV/m (10m limit)	37.0dBµV/m @189.01 MHz	-3.0dB	Complied

	Highest emissions – KN 22 (30-1000 MHz)									
	Frequency	Level	Pol	KN22 C	lass A	Detector	Azimuth	Height		
	MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1	189.006	37.0	V	40.0	-3.0	QP	60	1.0		
2	500.003	37.2	Н	47.0	-9.8	QP	104	1.5		
3	141.758	28.8	V	40.0	-11.2	QP	119	1.5		
4	65.749	28.6	V	40.0	-11.4	QP	174	1.5		
5	472.516	35.5	Н	47.0	-11.5	QP	72	2.0		
6	625.873	22.7	Н	47.0	-24.3	QP	70	1.5		

	Highest emissions – KN 22 (1-6GHz)									
	Frequency	Level	Pol	Pol KN22 Class A Detector Azimuth Heig						
	MHz	dBuV/m	v/h	Limit	Limit Margin		degrees	meters		
1	1600.040	43.0	V	56.0	-13.0	AVG	168	1.0		
2	2400.040	35.4	V	56.0	-20.6	AVG	9	1.0		
3	1600.130	46.3	V	76.0	-29.7	PK	168	1.0		
4	2400.030	42.7	V	76.0	-33.3	PK	9	1.0		

INFORMATION TECHNOLOGY EQUIPMENT IMMUNITY TEST RESULTS

The following tests were performed on the Ubiquiti Networks model AirCam. The results are based upon performance criteria defined by the company and as detailed in this test report.

Test	Basic Standard	Level Tested	Criterion Required	Criterion Met	Status		
ESD	KN 61000-4-2	4 kV CD 8 kV AD	В	А	Complied		
RF EM Field AM 80% AM 1kHz	KN 61000-4-3	80-1000 MHz A A Complied					
EFT, AC Power Port		1 kV	В	А	Complied		
EFT, DC Power Port	KN 61000-4-4		N/A – N	ote 1			
EFT, Signal Ports		N/A – Note 2					
Surge, AC Power Port		1 kV DM, 2 kV CM 1.2/50 µs	В	А	Complied		
Surge, DC Power Port	KN 61000-4-5	N/A – Note 1					
Surge, Signal Ports		N/A – Note 2					
RF, conducted continuous, Signal Ports		N/A – Note 2					
RF, conducted continuous, AC Power Port	KN 61000-4-6	0.15-80 MHz, xx Vrms 80% AM 1kHz	А	A	Complied		
RF, conducted continuous, DC Power Port		N/A – Note 1					
Power Frequency Magnetic Field	KN 61000-4-8		N/A – N	ote 3			
Voltage Dips and Interrupts (50/60Hz)	KN 61000-4-11	>95%, 0.5 cycles B A Complied 30%, 30 cycles C A Note 4 >95%, 300 cycles C C C					
Note 1 The EUT does not have any DC power ports Note 2 Ubiquiti Networks stated that the EUT's interface ports are not intended to connect to longer than 3m. Note 3 Ubiquiti Networks stated that the EUT does not contain any components susceptible to 50Hz magnetic fields.							

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below were calculated using the approach described in CISPR 16-4-2:2003 using a coverage factor of k=2, which gives a level of confidence of approximately 95%. The levels were found to be below levels of *U*cispr and therefore no adjustment of the data for measurement uncertainty is required.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
Conducted Emissions	dBuV or dBuA	150kHz – 30MHz	± 2.2 dB
Radiated Electric Field	dBuV/m	30 – 1000 MHz	± 3.6 dB
Radiated Electric Field	abav/m	1000 – 40,000 MHz	± 6.0 dB
Radiated Immunity	V/m	80 – 2700 MHz	- 26.3%, + 29.97%
ESD	KV	N/A	± 8.6%
Fast Transients	Voltage	N/A	± 5.98 %
	Timing	N/A	± 8.60 %
Surge	Voltage	N/A	± 4.92 %
RF Common Mode (CDN method)	Vrms	N/A	-12.64 %, +13.33 %
RF Common Mode (BCI method)	Vrms	N/A	-13.45 %, +15.32 %
Voltage Dips	Voltage	N/A	± 2.32 %
Voltage Dips	Timing	N/A	± 0.08mS

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Ubiquiti Networks model AirCam is a Security camera that is designed to stream live video. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the AirCam is 24 Vdc, 1 Amp. The electrical rating of the POE Adapter is 100-240V, 50-60Hz, 0.5A.

The sample was received on May 11, 2011 and tested on May 11, 12, 13, 15 and 16, 2011. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Ubiquiti	AirCam	Security Camera	4	N/A
Networks				
Ubiquiti	UBI-POE-24-1	POE Adapter	1010-0001765	N/A
Networks				

OTHER EUT DETAILS

The following EUT details should be noted: EUT is a POE device.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 6 cm wide by 16 cm deep by 6 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

No local support equipment was used during emissions testing.

The following equipment was used as remote support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Dell	Vostro	PC Laptop	32709455821	-

EUT INTERFACE PORTS

Por	rt		Cable(s)	
From	То	Description	Shielded/Unshielded	Length (m)
POE(EUT)	POE Injector	Cat. 5	Unshielded	0.5
AC Power(POE Injector)	AC Mains	3 Wire	Unshielded	1
LAN(POE Injector)	PC Laptop	Cat. 5	Unshielded	2

The I/O cabling configuration during emissions testing was as follows:

EUT OPERATION

During emissions testing the EUT was streaming live video.

During immunity testing the EUT was steaming live video. Normal operation is indicated by the EUT continuously streaming live video displayed on the PC Laptop and shall be monitored by the PC Laptop.

The performance criteria applied during immunity testing were:

Criterion A: During and after testing the EUT shall continue to show the video stream on the PC Laptop.

Criterion B: During application of the transient test, degradation of performance including loss of signal is allowed provided that the EUT self-recovers to normal operation after testing without any operator intervention.

Criterion C: Loss of function is allowed provided that normal operation can be restored by operator intervention.

EMISSIONS TESTING

RADIATED AND CONDUCTED EMISSIONS

Final test measurements were taken at the Elliott Laboratories Anechoic Chambers listed below. The test sites contain separate areas for radiated and conducted emissions testing. The sites conform to the requirements of ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz and CISPR 16-1-4:2007 - Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances. They are registered with the VCCI and are on file with the FCC and Industry Canada.

Site	Reg	sistration Num	bers	Location
Site	VCCI	FCC	Canada	Location
Chamber 3	R-1683 G-58 C-1795 T-1639	769238	IC 2845B-3	41039 Boyce Road Fremont, CA 94538-2435

RADIATED EMISSIONS CONSIDERATIONS

Radiated emissions measurements were made with the EUT powered from a supply voltage within the expected tolerances of each nominal operating voltage/frequency for each geographical regions covered by the scope of the standards referenced in this report.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4 and CISPR 22 (KN 22).

Mains port measurements are made with the EUT connected to the public power network through nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

Telecommunication port measurements are made with the unshielded network cable connected through an impedance stabilization network (ISN) appropriate to the type of cable employed. Where no suitable ISN is available measurements are made using a capacitive voltage probe (CVP) and a current probe. If shielded cables are specified for the port under test the measurement is made of the noise voltage on the shield of the cable via a 100 ohm resistor.

EMISSIONS MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1:2006 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7 GHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000 MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

Measurements are converted to the field strength at an antenna or voltage developed at the LISN (or ISN) measurement port, which is then compared directly with the appropriate specification limit under software control of the test receivers and spectrum analyzers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted emission measurements utilize a fifty micro-Henry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250-uH CISPR adapter. This network provides for calibrated radio-frequency noise measurements by the design of the internal low-pass and high-pass filters on the EUT and measurement ports, respectively.

IMPEDANCE STABILIZATION NETWORK (ISN)

Telecommunication port conducted emission measurements utilize an Impedance Stabilization Network with a 150-ohm termination impedance and specific longitudinal conversion loss as the voltage monitoring point. This network provides for calibrated radio-frequency noise measurements by the design of the internal circuitry on the EUT and measurement ports, respectively. For current measurements, a current probe with a uniform frequency response and less than 1-ohm insertion impedance is used.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high-amplitude transient events.

ANTENNAS

A bilog antenna or combination of biconical and log periodic antennas are used to cover the range from 30 MHz to 1000 MHz. Narrowband tuned dipole antennas may be used over the entire 30 to 1000 MHz frequency range for precision measurements of field strength. Above 1000 MHz, horn antennas are used. The antenna calibration factors are included in site factors that are programmed into the test receivers or data collection software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor drive to vary the antenna height.

ANSI C63.4, CISPR 22 and KN22 specify that the test height above ground for tablemounted devices shall be 80 centimeters. Floor-mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material up to 12-mm thick if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the company's specifications. An appendix of this report contains the list of test equipment used and calibration information.

EMISSIONS TEST PROCEDURES

EUT AND CABLE PLACEMENT

The standards require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, CISPR 22 and KN22, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS (MAINS)

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest-amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak-mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord. Emissions that have peak values close to the specification limit are also measured in the quasi-peak and average detection modes to determine compliance except when the amplitude of the emission when measured with the quasi-peak detector is more than 10 dB below the specification limit for average measurements. In this case only quasi-peak measurements are performed.

CONDUCTED EMISSIONS (TELECOMMUNICATION PORTS)

Conducted emissions voltages are measured at a point 80 cm from the EUT. If conducted emission currents are measured, the current probe is located 70 cm from the EUT. Preliminary measurements are made to determine the highest-amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak-mode scan is then performed in the position and mode for which the highest emission was noted. Emissions that have peak values close to the specification limit are also measured in the quasi-peak and average detection modes to determine compliance except when the amplitude of the emission when measured with the quasi-peak detector is more than 10 dB below the specification limit for average measurements. In this case only quasi-peak measurements are performed.

RADIATED EMISSIONS (SEMI-ANECHOIC and/or OATS TEST ENVIRONMENT)

Radiated emissions measurements in a semi-anechoic environment are performed in two phases (preliminary scan and final maximization). Final maximization may be performed on an OATS.

Preliminary Scan

A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulations specified on page 1. One or more of these are performed with the antenna polarized vertically and one or more of these are performed with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions if required. Other methods used during the preliminary scan for EUT emissions involve scanning with near-field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final Maximization

During final maximization, the highest-amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth that results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions that have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

For measurements above 1GHz every effort is made to ensure the EUT remains within the cone of radiation of the measurement antenna (i.e. 3dB beam-width of the antenna). This may include rotating the product and/or angling the measurement antenna.

When Testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5m. Maximum emissions are found within this restricted range because emission levels decrease over distance and as the antenna is raised above 2.5m, the distance from the EUT increases. As a result of the increased measurement distance, at antenna heights above 2.5m, lower emission levels are measured as compared to emissions levels measured at antenna heights at 2.5m and below.

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

IMMUNITY TESTING

GENERAL INFORMATION

Final tests were performed at the Elliott Laboratories Test Sites located at 41039 Boyce Road, Fremont, CA 94538-2435. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent CENELEC and IEC standards.

IMMUNITY MEASUREMENT INSTRUMENTATION

ELECTROSTATIC DISCHARGE TEST SYSTEM

An ESD generator is used for all testing. It is capable of applying electrostatic discharges in both contact discharge mode to 8 kV and air discharge mode to 16.5 kV in both positive and negative polarities in accordance with the IEC/EN/KN 61000-4-2 basic EMC publication.

ELECTROMAGNETIC FIELD TEST SYSTEM

A signal generator and power amplifiers are used to provide a signal at the appropriate power and frequency to an antenna to obtain the required electromagnetic field at the position of the EUT in accordance with the IEC/EN/KN 61000-4-3 basic EMC publication.

ELECTRICAL FAST TRANSIENT/BURST TEST SYSTEM

An electrical fast transient/burst generator is used for all testing. It is capable of applying the required fast transient immunity test levels to the mains at any phase angle with respect to the mains voltage waveform and to attached cables via a capacitive coupling clamp in accordance with the IEC/EN/KN 61000-4-4 basic EMC publication.

SURGE TEST SYSTEM

A surge generator is used for all testing. It is capable of providing the required surge immunity test levels to the mains port at any phase angle with respect to the mains line voltage waveform or to the signal port in accordance with the IEC/EN/KN 61000-4-5 basic EMC publication.

For I/O line surges a surge coupling network is used to couple the output from the generator to the I/O lines. The generator can generate the CWG $(1.2/50\mu S)$ and CCITT $(70/100\mu S)$ waveforms as required by the IEC/EN/KN 61000-4-5 basic standard.

CONDUCTED INTERFERENCE TEST SYSTEM

A signal generator and power amplifier are used to provide a signal at the appropriate power and frequency through a coupling network to obtain the required electromagnetic signal on the power cord and attached cables of the EUT in accordance with the IEC/EN/KN 61000-4-6 basic immunity standard.

VOLTAGE VARIATION TEST SYSTEM

A power-line disturbance simulator and variable transformer are used for all testing. These two units are, when used together, capable of simulating mains voltage variations between 0 and 100% for periods up to 100 seconds in duration in accordance with the IEC/EN/KN 61000-4-11 basic EMC standard.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the company's specifications. An appendix of this report contains the list of test equipment used and calibration information.

IMMUNITY TEST PROCEDURES

EQUIPMENT PLACEMENT

The basic standards for evaluating immunity to electrostatic discharges specify that a tabletop EUT shall be placed on a non-conducting table 80 centimeters above a ground reference plane and that floor-mounted equipment shall be placed on an insulating support approximately 10 centimeters above a ground plane. During the tests, the EUT is positioned over a ground reference plane in conformance with this requirement. For tabletop equipment, a 1.6 by 0.8 meter metal sheet is placed on the table and connected to the ground plane via a metal strap with two 470-kOhm resistors in series. The EUT and attached cables are isolated from this metal sheet by 0.5-millimeter thick insulating material.

The basic standards for evaluating immunity to radiated electric fields specify that a tabletop EUT be placed on a non-conducting table 80 centimeters high and that floor-mounted equipment may be mounted on non-conductive supports 0.05 to 0.15m high. During the IEC 61000-4-3 tests, the EUT is positioned in a shielded anechoic test chamber to reduce reflections from the internal surfaces of the chamber.

The basic standards for evaluating immunity electrically fast transient bursts specify that the EUT and attached cables be placed on an insulating support 10 centimeters above a ground reference plane. During the tests, the EUT was positioned on a table with a ground reference plane or on the floor in conformance with this requirement.

The basic standards for evaluating immunity to surge transients do not specify positioning of the EUT. The EUT was therefore placed on a table or on the floor.

The basic standards for evaluating immunity to conducted rf disturbances specify that the EUT be placed on an insulating support 10 centimeters above a ground reference plane and that the attached cables be maintained between 30 and 50 millimeters above this plane where possible. During the tests, the EUT was positioned on a table with a ground reference plane or on the floor in conformance with this requirement.

The basic standards for evaluating immunity to voltage dips and interruptions do not specify positioning of the EUT. The EUT was therefore placed on a table or on the floor.

APPLICATION OF ELECTROSTATIC DISCHARGES

The points of application of the test discharges directly to the EUT are determined after consideration of the parts of the EUT that are accessible to the operator during normal operation. Contact and air discharges are applied to the EUT, contact discharges to conducting surfaces and air-gap discharges to insulating surfaces. Contact discharges are also applied to the coupling planes to simulate nearby ESD events.

APPLICATION OF ELECTROMAGNETIC FIELD

The electromagnetic field is established at the front edge of the EUT.

The frequency range is swept through the frequency range of the test using a power level necessary to obtain the required field strength at the EUT. The field is amplitude modulated using a 1-kHz sine wave to a depth of 80% for the swept frequency test in accordance with the applicable basic standard(s).

The test is repeated with each of the four sides of the EUT facing the field-generating antenna. For small, portable products the test is also performed with the top and bottom sides of the EUT facing the antenna.

APPLICATION OF ELECTRICAL FAST TRANSIENTS

The application of the test voltage to the EUT is made to the cable connected to the power port under test via discrete capacitors and through a capacitive coupling clamp in the case of cables connected to signal ports.

APPLICATION OF SURGES

The application of the surge to the EUT's AC or DC power port is made to the power cable attached to the unit via the coupling/decoupling network within the surge generator.

For coupling to unshielded signal lines a coupling network is used to give the correct coupling path (resistor and capacitor/spark gap) to the line under test. Coupling to shielded signal lines is made directly to the shield at the far end of the cable, with the cable length set to the shorter of 20m or the maximum specified cable length. Whenever possible a decoupling network is placed in series with the I/O line under test and the support equipment to ensure that any susceptibility observed is due to the EUT and not the support equipment. Decoupling networks are not available for high-speed signal lines.

APPLICATION OF CONDUCTED INTERFERENCE

The application of the test voltage to the EUT is made through either a coupling decoupling network (CDN), by direct injection, or through an inductive coupling clamp as appropriate to the cable being tested. The frequency range is swept from 0.15 to 80 MHz using a power level necessary to obtain the specified interference voltage.

APPLICATION OF VOLTAGE VARIATIONS

The applications of the variations in mains voltage to the EUT are made through the AC power cable attached to the unit.

Appendix A Test Equipment Calibration Data

Manufacturer Conducted Emissions	Description - AC Power Ports, 12-May-11	Model	<u>Asset #</u>	Cal Due
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	1401	4/21/2012
Rohde & Schwarz Fischer Custom	EMI Test Receiver, 20 Hz-7 GHz LISN, 25A, 150kHz to 30MHz,	ESIB7 FCC-LISN-50-25-2-	1630 2001	4/13/2012 9/16/2011
Comm	25 Amp,	09	2001	0/10/2011
	30 - 6,000 MHz, 12-May-11			
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	5/26/2011
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	9/21/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	5/14/2011
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1549	6/4/2011
Rohde & Schwarz Com-Power Corp.	EMI Test Receiver, 20 Hz-7 GHz Preamplifier, 30-1000 MHz	ESIB7 PAM-103	1630 2380	4/13/2012 4/13/2012
	•		2000	H/10/2012
Radiated Immunity, 80 EMCO) - 1,000 MHz, 13-May-11	3143	100	N/A
Werlatone	Antenna, Biconilog Transmitting Directional Coupler, 80-1000 MHz, 40dB, 200W	C3910	180 917	N/A N/A
Rohde & Schwarz	Power Sensor, 1uW-100mW, DC-18 GHz, 50ohms	NRV-Z51	1069	7/19/2011
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1539	9/13/2011
Anritsu	Signal Generator, 10MHz- 20GHz	68347C	1785	11/22/2011
Amplifier Research	Amplifier, 250W, 80-1000 MHz	250A1000	1809	N/A
	(IEC/EN 61000-4-6), 15-May-11			
Rohde & Schwarz	Signal Generator, 9 kHz-1.04 GHz	SMY01	168	11/11/2011
Fischer Custom Comm.	Decoupling Network,.15 - 230 MHz	F-203I-DCN	605	N/A
Instruments For Industry	Power Supply Control Module	P.S. 5000 / 28 / 40	639	N/A
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1290	11/29/2011
Fischer Custom Comm.	M3 Network, 150 kHz-230 MHz	FCC-801-M3-25A	1581	5/19/2011
Bird Electronics Corp.	6 dB, 100 W Attenuator	100-A-FFN-06	1596	6/28/2011
Fischer Custom Comm.	150-50 ohm adapter, 1/2, 0.15 to 80 MHz	FCC-801-150-50	1600	5/11/2012
Fischer Custom Comm.	150-50 ohm adapter, 1/2, 0.15 to 80 MHz	FCC-801-150-50	1601	5/11/2012
Rohde & Schwarz	Pwr Sensor 300 uW - 30 Watts (+ 25dB pad)	NRV-Z54	1788	7/19/2011
Hevi-Duty	Transformer 208V-220V 60Hz only "SV KN Kit 12"	HS5F3AS	2209	N/A
EFT, 15-May-11				
Fischer Custom Comm.	Decoupling Network,.15 - 230 MHz	F-203I-DCN	605	N/A
EM Test AG Hevi-Duty	EFT Generator Transformer 208V-220V 60Hz	UCS 500 M6 HS5F3AS	1585 2209	N/A N/A
i levi-Duty	only "SV KN Kit 12"		2209	N/A

<u>Manufacturer</u> VDI, 15-May-11	Description	<u>Model</u>	<u>Asset #</u>	Cal Due
Fischer Custom Comm.	Decoupling Network,.15 - 230 MHz	F-203I-DCN	605	N/A
EM Test AG Hevi-Duty	VDI Generator Transformer 208V-220V 60Hz only "SV KN Kit 12"	UCS 500 M6 HS5F3AS	1585 2209	N/A N/A
ESD, 15-May-11				
Schaffner	ESD Gun	NSG-435	1491	2/7/2012
Elliott Laboratories	ESD, Vertical Plane, 19-3/4 x 19- 3/4	ESD, VP, 19-3/4 x 19-3/4	1664	N/A
Hevi-Duty	Transformer 208V-220V 60Hz only "SV KN Kit 12"	HS5F3AS	2209	N/A
Surge, 16-May-11	_			
EMC Partner	Surge	Transient 2000 IN6	2203	8/3/2011

Appendix B Test Data

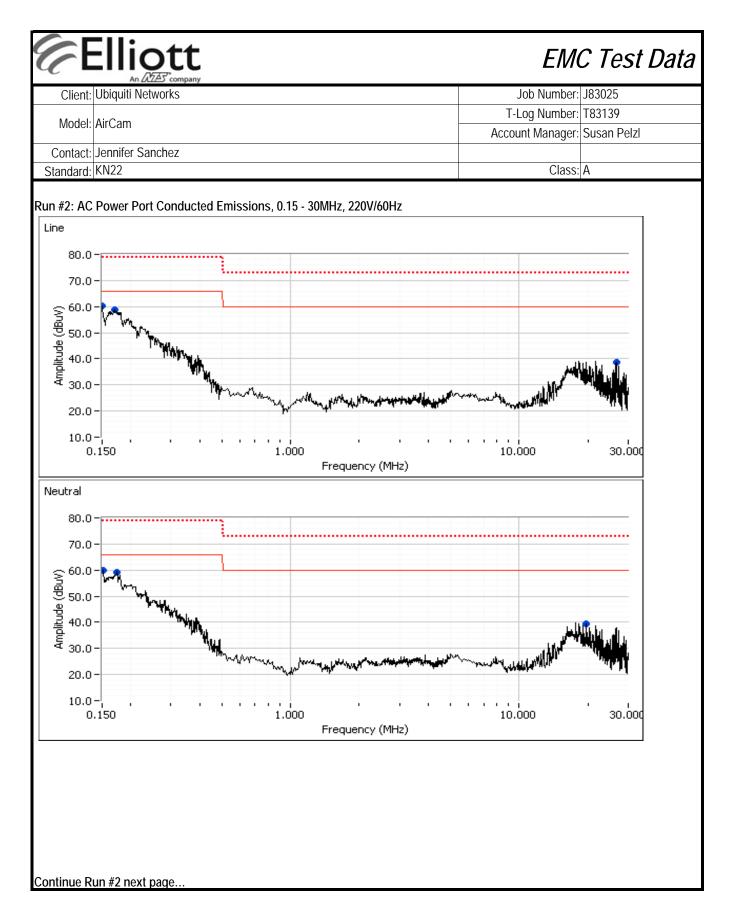
T83139 Pages 24 - 55

EMC Test Data

An LALC	D company		
Client:	Ubiquiti Networks	Job Number:	J83025
Model:	AirCam	T-Log Number:	T83139
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Emissions Standard(s):	KN22	Class:	A
Immunity Standard(s):	KN24	Environment:	Radio

EMC Test Data

For The


Ubiquiti Networks

Model

AirCam

Date of Last Test: 5/15/2011

Client: Ubiquiti Networks Model: AirCam Contact: Jennifer Sanchez Standard: KN22 Conducted Emiss (Elliott Laboratories Fremont Facility, Ser	Job Number: J83025 T-Log Number: T83139 Account Manager: Susan Pelzl Class: A
Contact: Jennifer Sanchez Standard: KN22 Conducted Emiss	Account Manager: Susan Pelzl
Standard: KN22 Conducted Emiss	
Standard: KN22 Conducted Emiss	Class: A
est Specific Details	
Objective: The objective of this test session is to perform final qu specification listed above.	alification testing of the EUT with respect to the
	ig. Used: 1
	Change: None Voltage: 220V/60Hz
Ambient Conditions: Temperature: 21 °C	
Rel. Humidity: 34 %	
Rel. Humidity: 34 %	
	Result Margin

etworks Canchez Conducted AC Line Line Line Neutral Neutral Line Line Neutral Neutral Neutral Neutral	d during pre Cla Limit 66.0 66.0 66.0			Iz s. average limit, Comments	Job Number: J T-Log Number: 1 Account Manager: 5 Class: <i>F</i>	T83139 Susan Pelzl
Sanchez ort Conducted dings captured AC Line Line Neutral Neutral Line 1	d during pre Cla Limit 66.0 66.0 66.0	- scan (peak ss A <u>Margin</u> -5.8	readings ve Detector QP/Ave	s. average limit)	T-Log Number: 1 Account Manager: 5 Class: A	T83139 Susan Pelzl
ort Conducted dings captured AC Line Line 1 Neutral Neutral Line 1	d during pre Cla Limit 66.0 66.0 66.0	- scan (peak ss A <u>Margin</u> -5.8	readings ve Detector QP/Ave	s. average limit)	Account Manager: S Class: A	Susan Pelzl
ort Conducted dings captured AC Line Line 1 Neutral Neutral Line 1	d during pre Cla Limit 66.0 66.0 66.0	- scan (peak ss A <u>Margin</u> -5.8	readings ve Detector QP/Ave	s. average limit)		4
ort Conducted dings captured AC Line Line 1 Neutral Neutral Line 1	d during pre Cla Limit 66.0 66.0 66.0	- scan (peak ss A <u>Margin</u> -5.8	readings ve Detector QP/Ave	s. average limit)		4
dings capture AC Line Line 1 Neutral Neutral Line 1	d during pre Cla Limit 66.0 66.0 66.0	- scan (peak ss A <u>Margin</u> -5.8	readings ve Detector QP/Ave	s. average limit)		
dings capture AC Line Line 1 Neutral Neutral Line 1	d during pre Cla Limit 66.0 66.0 66.0	- scan (peak ss A <u>Margin</u> -5.8	readings ve Detector QP/Ave	s. average limit))	
AC Line Line 1 Neutral Neutral Line 1	Cla Limit 66.0 66.0 66.0	ss A Margin -5.8	Detector QP/Ave)	
Line Line 1 Neutral Neutral Line 1	Limit 66.0 66.0 66.0	Margin -5.8	QP/Ave	Comments		
Line 1 Neutral Neutral Line 1	66.0 66.0 66.0	-5.8				
Neutral Neutral Line 1	66.0 66.0		Poak			
Neutral Line 1	66.0	-61				
Line 1			Peak			
	// ^	-6.7	Peak			
Neutral	66.0	-7.3	Peak			
1	60.0	-20.4	Peak			
Line 1	60.0	-21.2	Peak			
average read	ngs					
AC		ss A	Detector	Comments		
		<u>u</u>		QP (1.00s)		
Line 1	79.0		QP			
	73.0	-35.2	QP			
Neutral	73.0	-35.8	QP			
Line 1	66.0	-37.0	AVG			
Line 1	66.0	-39.0	AVG	AVG (0.10s)		
Neutral	66.0	-39.4	AVG	AVG (0.10s)		
Neutral	66.0	-39.8	AVG	AVG (0.10s)		
	Neutral Line 1 Neutral Line 1 Line 1 Neutral	Line 1 79.0 Line 1 60.0 Neutral 60.0 Neutral 79.0 Line 1 73.0 Line 1 66.0 Line 1 66.0 Neutral 66.0	Line 1 79.0 -24.9 Line 1 60.0 -25.7 Neutral 60.0 -26.6 Neutral 79.0 -26.9 Line 1 79.0 -26.9 Line 1 79.0 -27.0 Neutral 79.0 -27.7 Line 1 73.0 -35.2 Neutral 73.0 -35.8 Line 1 66.0 -37.0 Line 1 66.0 -39.0 Neutral 66.0 -39.4	Line 1 79.0 -24.9 QP Line 1 60.0 -25.7 AVG Neutral 60.0 -26.6 AVG Neutral 79.0 -26.9 QP Line 1 79.0 -26.9 QP Line 1 79.0 -27.0 QP Neutral 79.0 -27.7 QP Line 1 73.0 -35.2 QP Neutral 73.0 -35.8 QP Line 1 66.0 -37.0 AVG Line 1 66.0 -39.0 AVG Neutral 66.0 -39.4 AVG	Line Limit Margin QP/Ave Line 1 79.0 -24.9 QP QP (1.00s) Line 1 60.0 -25.7 AVG AVG (0.10s) Neutral 60.0 -26.6 AVG AVG (0.10s) Neutral 79.0 -26.6 AVG QP (1.00s) Line 1 79.0 -26.9 QP QP (1.00s) Line 1 79.0 -27.0 QP QP (1.00s) Line 1 79.0 -27.7 QP QP (1.00s) Line 1 73.0 -35.2 QP QP (1.00s) Line 1 73.0 -35.8 QP QP (1.00s) Line 1 66.0 -37.0 AVG AVG (0.10s) Line 1 66.0 -39.0 AVG AVG (0.10s) Neutral 66.0 -39.4 AVG AVG (0.10s)	Line Limit Margin QP/Ave Line 1 79.0 -24.9 QP QP (1.00s) Line 1 60.0 -25.7 AVG AVG (0.10s) Neutral 60.0 -26.6 AVG AVG (0.10s) Neutral 79.0 -26.9 QP QP (1.00s) Line 1 79.0 -26.9 QP QP (1.00s) Line 1 79.0 -27.0 QP QP (1.00s) Line 1 79.0 -27.7 QP QP (1.00s) Line 1 73.0 -35.2 QP QP (1.00s) Line 1 73.0 -35.8 QP QP (1.00s) Line 1 66.0 -37.0 AVG AVG (0.10s) Line 1 66.0 -37.0 AVG AVG (0.10s) Line 1 66.0 -39.0 AVG AVG (0.10s) Neutral 66.0 -39.4 AVG AVG (0.10s)

	EMC Test Data
Client: Ubiquiti Networks	Job Number: J83025
Model: AirCam	T-Log Number: T83139
	Account Manager: Susan Pelzl
Contact: Jennifer Sanchez Standard: KN22	Class: A

	EM	C Test Data
Client: Ubiquiti Networks	Job Number:	J83025
	T-Log Number:	
Model: AirCam	Account Manager:	Susan Pelzl
Contact: Jennifer Sanchez Standard: KN22	Class:	۸
	Company	

EMC Test Data

	An Dille Company		
Client:	Ubiquiti Networks	Job Number:	J83025
Madalı	AirCam	T-Log Number:	T83139
wouer.	Alican	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	KN22	Class:	А

Radiated Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 5/11/2011 Test Engineer: Peter Sales Test Location: Fremont Chamber #3 Config. Used: 1 Config Change: None EUT Voltage: 220V/60Hz

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing. Any remote support equipment was located outside the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

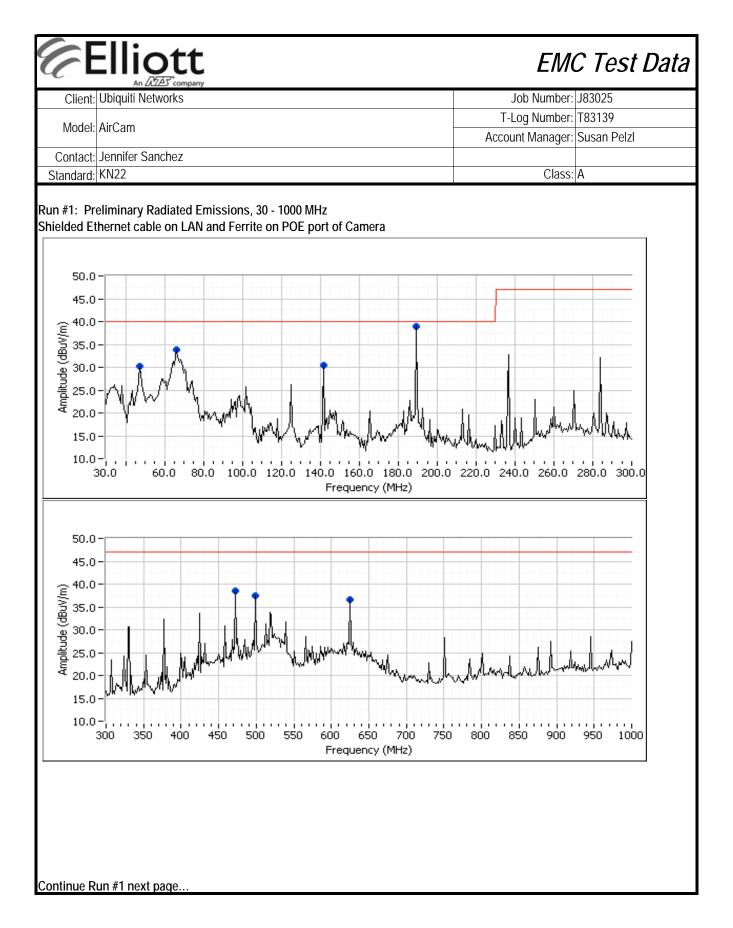
The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions:

Temperature:	21 °C
Rel. Humidity:	34 %

Summary of Results


Run #	Test Performed	Limit	Result	Margin
1	Radiated Emissions	Class A	Docc	37.0dBµV/m @ 189.01MHz
	30 - 1000 MHz, Preliminary	Class A	Pass	(-3.0dB)
n	Radiated Emissions	Class A	Pass	37.0dBµV/m @ 189.01MHz
Z	30 - 1000 MHz, Maximized	Class A	Pass	(-3.0dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

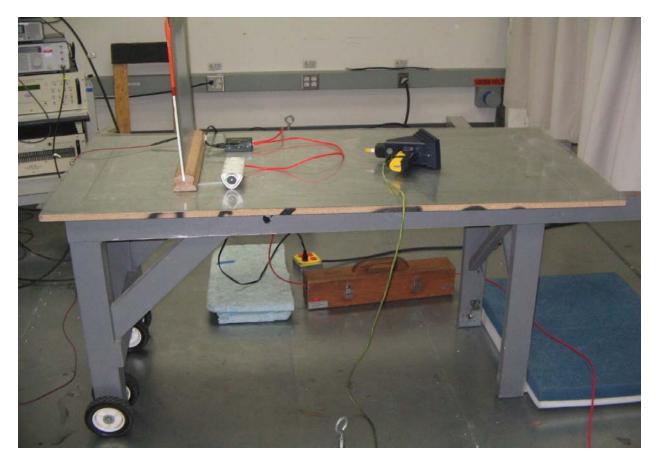
Deviations From The Standard

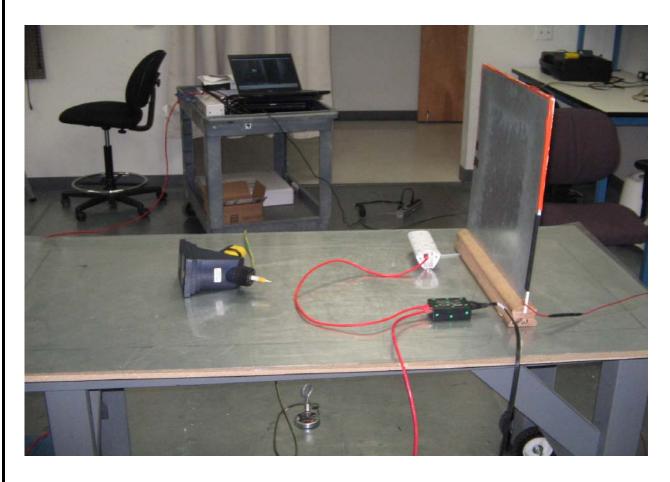
No deviations were made from the requirements of the standard.

Client	Ubiquiti Net	works						Job Number:	J83025
								Log Number:	T83139
Model	AirCam				unt Manager:				
Contact	Jennifer Sar	nchez		5					
Standard								Class:	A
	eliminary Ra	adiated En	nissions, 30	- 1000 MHz	(continue)				
		quency Ra		1	Distance	Limit D		1	ion Factor
	30) - 1000 MI	HZ		10	1	0	0	.0
eliminary	/ peak readir	nas captur	ed durina a	re-scan					
requency	Level	Pol		5022 A	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
89.006	38.9	V	40.0	-1.1	Peak	61	1.0		
65.749	33.9	V	40.0	-6.1	Peak	174	1.5		
72.516	38.5	Н	47.0	-8.5	Peak	72	2.0		
141.758	30.5	V	40.0	-9.5	Peak	120	1.5		
500.003	37.5	Н	47.0	-9.5	Peak	104	1.5		
45.554	30.3	V	40.0	-9.7	Peak	11	2.5		
25.873	36.7	Н	47.0	-10.3	Peak	70	1.5		
liminan	u nuasi-naak	readings	(no maninu	lation of FU	T interface ca	ahles)			
equency	Level	Pol		5022 A	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	00.1111011(0	
89.006	37.0	V	40.0	-3.0	QP	60	1.0	QP (1.00s)	
00.003	37.2	Ĥ	47.0	-9.8	QP	104	1.5	QP (1.00s)	
41.758	28.8	V	40.0	-11.2	QP	119	1.5	QP (1.00s)	
65.749	28.6	V	40.0	-11.4	QP	174	1.5	QP (1.00s)	
472.516	35.5	Н	47.0	-11.5	QP	72	2.0	QP (1.00s)	
25.873	22.7	Н	47.0	-24.3	QP	70	1.5	QP (1.00s)	
	· ·	readings (includes ma		of EUT interfa				in Factor
		quency Ra			Distance	Limit D			ion Factor
	30) - 1000 MI	Π <u>/</u>		10		0	0	.0
equency	Level	Pol	EN 55	5022 A	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
89.006	37.0	V	40.0	-3.0	QP	60	1.0	QP (1.00s)	
00.003	37.2	Н	47.0	-9.8	QP	104	1.5	QP (1.00s)	
41.758	28.8	V	40.0	-11.2	QP	119	1.5	QP (1.00s)	
65.749	28.6	V	40.0	-11.4	QP	174	1.5	QP (1.00s)	
472.516	35.5	Н	47.0	-11.5	QP	72	2.0	QP (1.00s)	
525.873	22.7	Н	47.0	-24.3	QP	70	1.5	QP (1.00s)	

	EMC Test Dat
Client: Ubiquiti Networks	Job Number: J83025
Model: AirCam	T-Log Number: T83139
	Account Manager: Susan Pelzl
Contact: Jennifer Sanchez tandard: KN22	Class: A

EMC Test Data


(CE	Elliott An MAS [*] company	EMO	C Test Data
	Ubiquiti Networks	Job Number:	J83025
Model	AirCam	T-Log Number:	T83139
wouer.	AllCalli	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	KN22	Class:	A


C	Ellio	tt				El	MC Test Data
		Ubiquiti Networks AirCam					J83025
					T-Log Ni Account Ma		Susan Pelzl
Immu	Contact: unity Standard(s):	Jennifer Sanchez KN24			Enviro	nment:	Radio
		Ele	ctrostatic Dis	scharge (KN	l 61000-4-2)		
•	becific Details bjective: The obje listed abo		ession is to perform	n final qualification	testing of the EUT w	ith resp	pect to the specification
Test E	of Test: 5/15/201 ngineer: Chris Gro ocation: Fremont	pat	Config. Used: Config Change: EUT Voltage:	none			
For table	II Test Configu -top equipment, th plane, 80 cm abov	e EUT and all loca		nt were located of	n a 0.5-mm thick insu	lating la	ayer above a horizontal
applied to	o coupling planes a	and conductive su	rfaces of the EUT.	Air discharges w		n-cond	Contact discharges were uctive surfaces of the EUT.
The dete declaratio		e test point being a	a part of a conductiv	ve or non-conduct	ive surface was base	ed on th	e manufacturer's
Ambier	nt Conditions:		Temperature: Relative Humidity: Pressure:	21 °C 33 % 1016 mb			
Summa	ary of Results	- Electrostatic	Discharges				
Run #	Port		Level Applied	Performa Required	nce Criteria Met / Result		Comments
1	Enclosure	4kV CD 8kV AD	4kV CD 8kV AD	В	A / Pass	R	efer to Individual Run
No modif Deviati	cations Made E ications were mad ons From The tions were made fr	e to the EUT durin		l.			

	Positive			Account N	Number: Aanager: ronment:	Susan P	elzl	
	Positive						eizi	
	Positive			Envi	ronment:	Radio		
	Positive							
	Positive							
		Polarity	Negative Polarity					
	(k'	1	(kV)					
Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4	
2	4	6	8	2	4	6	8	
Х	Х			Х	Х			
X	X			Y	Y			
~	^			Λ	~			
<u> </u>	Positive	Polarity			Negative	e Polarity		
	(k'	V)			(k	V)		
Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4	
2	4	6	8	2	4	6	8	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
X				Х	Х			
Level 1			Level 4	Level 1	Level 2	Level 3	Level 4	
2	4	8	15	2	4	8	15	
		ND		ND	ND	ND		
ND	ND	ND		ND	ND	ND		
ND	ND	ND		ND	ND	ND		
ND	ND	ND		ND	ND	ND		
ND	ND	ND		ND	ND	ND		
NE				ND	ND	ND		
ND	ND	ND		ND	ND	ND		
	X Level 1 2 N/A X X X Level 1 2 ND ND ND ND ND ND ND ND ND ND ND ND ND	X X Positive (k Level 1 Level 2 2 4 N/A N/A X X X X X X Level 1 Level 2 2 4 N/A N/A V/A N/A N/A N/A N/A N/A N/A N/A N	XXXXPositive Polarity (kV)Level 1Level 2Level 3246N/AN/AN/AXXXXXXXXXLevel 1Level 2Level 3248UXXND	XXIXXIPositive Polarity (kV)Level 1Level 2Level 32468N/AN/AN/AXXIXXIXXILevel 1Level 2Level 3Level 1Level 2Level 3Level 1Level 2Level 3Level 1Level 2Level 3ND	XXXXXXXPositive Polarity (kV)XLevel 1Level 2Level 3Level 4Level 124682N/AN/AN/AN/AN/AXXXXXXXXXXLevel 1Level 2Level 3Level 4Level 1248152ND	XXXXXPositive PolarityNegative(kV)(kV)Level 1Level 2Level 4Level 1246824N/AN/AN/AN/AN/AN/AN/AN/AN/AN/AXXXXXXXXXXXXXXXLevel 1Level 2Level 3Level 4Level 12481524ND<	XXXXXXPositive Polarity (kV)Negative Polarity (kV)Level 1Level 2Level 3Level 4Level 1Level 2Level 32468246N/AN/AN/AN/AN/AN/AN/AXXXXXXXXXXXXXXXXXXLevel 1Level 2Level 3Level 4Level 1Level 2Level 324815248248152480ND </td	

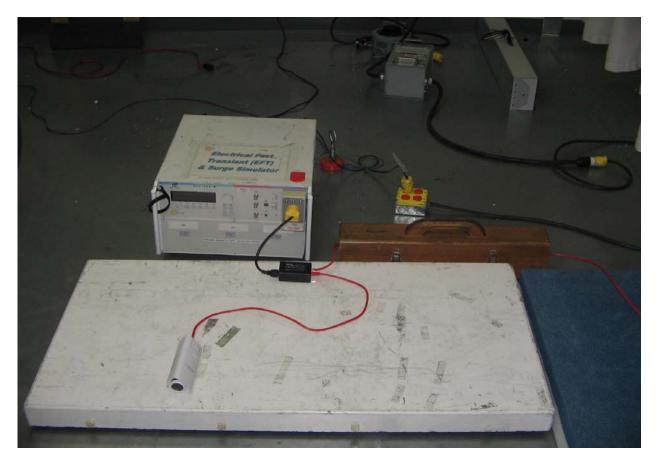
An ZAZA) company		
Client:	Ubiquiti Networks	Job Number:	J83025
Model:	AirCam	T-Log Number:	T83139
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Immunity Standard(s):	KN24	Environment:	Radio

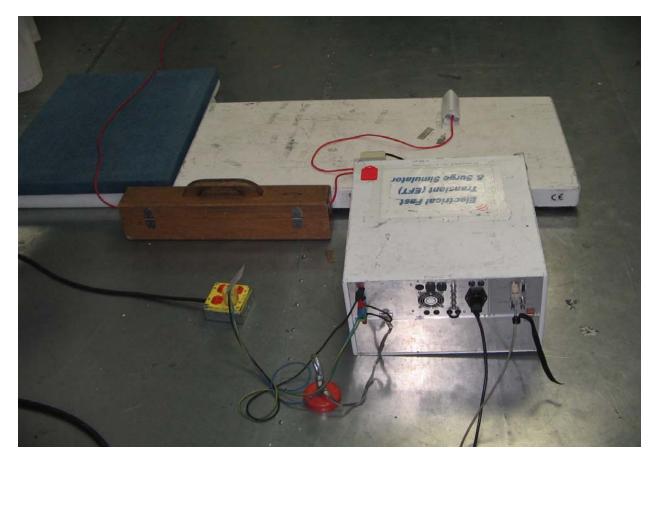
5 company		
Ubiquiti Networks	Job Number:	J83025
AirCam	T-Log Number:	T83139
	Account Manager:	Susan Pelzl
Jennifer Sanchez		
KN24	Environment:	Radio
	Ubiquiti Networks AirCam Jennifer Sanchez	Ubiquiti Networks Job Number: AirCam T-Log Number: Account Manager: Account Manager:

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specifical listed above. Date of Test: 5/13/2011 16:03 Config. Used: 1 Test Engineer: Hong Stenerson Config Change: None Test Location: Fremont Chamber #1 EUT Voltage: 220V/60Hz General Test Configuration The EUT and all local support equipment were located on a turntable in an anechoic chamber. All remote support equipment was located outside the chamber. Interface cabling to the remote support equipment was routed along the floor and, where possible, through ferrite clamps at the exit point from the chamber. Ambient Conditions: Temperature: 22 °C
Account Manager: Susan Pelzl Contact: Jennifer Sanchez Environment: Radio Immunity Standard(s): KN24 Environment: Radio Radiated Immunity (KN 61000-4-3) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specifica listed above. Date of Test: 5/13/2011 16:03 Config. Used: 1 Test Engineer: Hong Stenerson Config Change: None Test Location: Fremont Chamber #1 EUT Voltage: 220V/60Hz General Test Configuration The EUT and all local support equipment were located on a turntable in an anechoic chamber. All remote support equipment was located outside the chamber. Interface cabling to the remote support equipment was routed along the floor and, where possible, through ferrite clamps at the exit point from the chamber. Ambient Conditions: Temperature: 22 °C
Contact. Jennifer Sanchez Environment: Radio Immunity Standard(s): KN24 Environment: Radio Radiated Immunity (KN 61000-4-3) Fest Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specifica listed above. Date of Test: 5/13/2011 16:03 Config. Used: 1 Test Engineer: Hong Stenerson Config Change: None Test Location: Fremont Chamber #1 EUT Voltage: 220V/60Hz General Test Configuration The EUT and all local support equipment were located on a turntable in an anechoic chamber. All remote support equipment was cated outside the chamber. Interface cabling to the remote support equipment was routed along the floor and, where possible, hrough ferrite clamps at the exit point from the chamber. Ambient Conditions: Temperature: 22 °C
Radiated Immunity (KN 61000-4-3) Fest Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specifica listed above. Date of Test: 5/13/2011 16:03 Config. Used: 1 Test Engineer: Hong Stenerson Config Change: None Test Location: Fremont Chamber #1 EUT Voltage: 220V/60Hz General Test Configuration The EUT and all local support equipment were located on a turntable in an anechoic chamber. All remote support equipment was coated outside the chamber. Interface cabling to the remote support equipment was routed along the floor and, where possible, hrough ferrite clamps at the exit point from the chamber. Ambient Conditions: Temperature: 22 °C
Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specifical listed above. Date of Test: 5/13/2011 16:03 Config. Used: 1 Test Engineer: Hong Stenerson Config Change: None Test Location: Fremont Chamber #1 EUT Voltage: 220V/60Hz General Test Configuration Chamber were located on a turntable in an anechoic chamber. All remote support equipment was ocated outside the chamber. Interface cabling to the remote support equipment was routed along the floor and, where possible, hrough ferrite clamps at the exit point from the chamber. Ambient Conditions: Temperature: 22 °C
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specifical listed above. Date of Test: 5/13/2011 16:03 Config. Used: 1 Test Engineer: Hong Stenerson Config Change: None Test Location: Fremont Chamber #1 EUT Voltage: 220V/60Hz General Test Configuration Fremont were located on a turntable in an anechoic chamber. All remote support equipment was coated outside the chamber. Interface cabling to the remote support equipment was routed along the floor and, where possible, hrough ferrite clamps at the exit point from the chamber. Ambient Conditions: Temperature: 22 °C
Date of Test: 5/13/2011 16:03 Config. Used: 1 Test Engineer: Hong Stenerson Config Change: None Test Location: Fremont Chamber #1 EUT Voltage: 220V/60Hz General Test Configuration EUT voltage: 220V/60Hz The EUT and all local support equipment were located on a turntable in an anechoic chamber. All remote support equipment was pocated outside the chamber. Interface cabling to the remote support equipment was routed along the floor and, where possible, hrough ferrite clamps at the exit point from the chamber. Ambient Conditions: Temperature: 22 °C
Test Engineer: Hong Stenerson Config Change: None Test Location: Fremont Chamber #1 EUT Voltage: 220V/60Hz General Test Configuration EUT voltage: 220V/60Hz The EUT and all local support equipment were located on a turntable in an anechoic chamber. All remote support equipment was ocated outside the chamber. Interface cabling to the remote support equipment was routed along the floor and, where possible, hrough ferrite clamps at the exit point from the chamber. Ambient Conditions: Temperature: 22 °C
The EUT and all local support equipment were located on a turntable in an anechoic chamber. All remote support equipment was located outside the chamber. Interface cabling to the remote support equipment was routed along the floor and, where possible, through ferrite clamps at the exit point from the chamber. Ambient Conditions: Temperature: 22 °C
Rel. Humidity: 33 % Summary of Results-Radiated Immunity
Run # Port Test Level Performance Criteria Comments Required Applied Required Met / Result Comments
1 Enclosure 80-1000 MHz 80-1000 MHz A A / Pass 3 V/m 3 V/m A A / Pass

		r* _{company} Ubiquiti ſ	Vetworks						Inh	Number:	<i>IC T</i>	- 	
		AirCam	Termonito								T83139		
	_								Account N	Manager:	Susan P	elzl	
Immunity Sta	Contact:		Sanchez						Envi	ronment:	Dadio		
ininiunity Sta	iuaiu(s).	NNZ4									Naulu		
un #1: Radiate	d Immun	ity, 80-10	000 MHz	(KN6100	0-4-3)								
			equency:		00 MHz								
			tep Size:		%								
			vell time: niformity:	2874	ms x 1.5m								
							_						
		Modu											
			Depin/ D	Eviation.	0070								
	I												
Frequency	nge (MHz) V/m Vert. Horiz. Vert. Horiz. Vert.	ear	Ri	ght	Т	ор	Во	ttom					
Range (MHz)	V/m	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.	Vert.	Hori
Range (MHz) 80-1000 est files used for ne following cali	V/m 3 this run: pration file	Vert. X	Horiz. X	Vert. X uff\RI Pla	Horiz. X	Vert. X es FT\CH	Horiz. X 11\80-100	Vert. X 0 MHz\80	Horiz. X	Vert. N/A	Horiz. N/A	Vert. N/A	Hor
Range (MHz) 80-1000 est files used for the following cali 2.5m tip 2.5m tip	V/m 3 this run: oration file of Antenr of Antenr	Vert. X es from U na to the f na to the f	Horiz. X :\EMC St ield 1.55r ield 1.55r	Vert. X uff\RI Pla n High 80 n High 80	Horiz. X Dyback File MHz - 1 MHz - 1	Vert. X es FT\CH 000 MHz 000 MHz	Horiz. X 11\80-100 H 3Vm.c V 3Vm.c	Vert. X 0 MHz\80 rf	Horiz. X	Vert. N/A Hz (Oct 2	Horiz. N/A 2010)\ we	Vert. N/A re used:	Hor
Range (MHz) 80-1000 est files used for he following cali 2.5m tip 2.5m tip	V/m 3 this run: oration file of Antenr of Antenr	Vert. X es from U na to the f na to the f nat the un	Horiz. X :\EMC St ield 1.55r ield 1.55r ield 1.55r	Vert. X uff\RI Pla n High 80 n High 80 ed to ope	Horiz. X Dyback File MHz - 1 MHz - 1	Vert. X es FT\CH 000 MHz 000 MHz	Horiz. X 11\80-100 H 3Vm.c	Vert. X 0 MHz\80 rf	Horiz. X	Vert. N/A Hz (Oct 2	Horiz. N/A 2010)\ we	Vert. N/A re used:	ttom Hori
Range (MHz) 80-1000 est files used for the following cali 2.5m tip 2.5m tip	V/m 3 this run: oration file of Antenr of Antenr	Vert. X es from U na to the f na to the f nat the un	Horiz. X :\EMC St ield 1.55r ield 1.55r ield 1.55r	Vert. X uff\RI Pla n High 80 n High 80 ed to ope	Horiz. X Dyback File MHz - 1 MHz - 1	Vert. X es FT\CH 000 MHz 000 MHz	Horiz. X 11\80-100 H 3Vm.c V 3Vm.c	Vert. X 0 MHz\80 rf	Horiz. X	Vert. N/A Hz (Oct 2	Horiz. N/A 2010)\ we	Vert. N/A re used:	Hori
Range (MHz) 80-1000 est files used for e following cali 2.5m tip 2.5m tip	V/m 3 this run: oration file of Antenr of Antenr	Vert. X es from U na to the f na to the f nat the un	Horiz. X :\EMC St ield 1.55r ield 1.55r ield 1.55r	Vert. X uff\RI Pla n High 80 n High 80 ed to ope	Horiz. X Dyback File MHz - 1 MHz - 1	Vert. X es FT\CH 000 MHz 000 MHz	Horiz. X 11\80-100 H 3Vm.c V 3Vm.c	Vert. X 0 MHz\80 rf	Horiz. X	Vert. N/A Hz (Oct 2	Horiz. N/A 2010)\ we	Vert. N/A re used:	Hori
Range (MHz) 80-1000 est files used for e following cali 2.5m tip 2.5m tip	V/m 3 this run: oration file of Antenr of Antenr	Vert. X es from U na to the f na to the f nat the un	Horiz. X :\EMC St ield 1.55r ield 1.55r ield 1.55r	Vert. X uff\RI Pla n High 80 n High 80 ed to ope	Horiz. X Dyback File MHz - 1 MHz - 1	Vert. X es FT\CH 000 MHz 000 MHz	Horiz. X 11\80-100 H 3Vm.c V 3Vm.c	Vert. X 0 MHz\80 rf	Horiz. X	Vert. N/A Hz (Oct 2	Horiz. N/A 2010)\ we	Vert. N/A re used:	Hori
Range (MHz) 80-1000 est files used for e following cali 2.5m tip 2.5m tip	V/m 3 this run: oration file of Antenr of Antenr	Vert. X es from U na to the f na to the f nat the un	Horiz. X :\EMC St ield 1.55r ield 1.55r ield 1.55r	Vert. X uff\RI Pla n High 80 n High 80 ed to ope	Horiz. X Dyback File MHz - 1 MHz - 1	Vert. X es FT\CH 000 MHz 000 MHz	Horiz. X 11\80-100 H 3Vm.c V 3Vm.c	Vert. X 0 MHz\80 rf	Horiz. X	Vert. N/A Hz (Oct 2	Horiz. N/A 2010)\ we	Vert. N/A re used:	Hori
Range (MHz) 80-1000 st files used for e following cali 2.5m tip 2.5m tip Jote: An "X" ir	V/m 3 this run: oration file of Antenr of Antenr	Vert. X es from U na to the f na to the f nat the un	Horiz. X :\EMC St ield 1.55r ield 1.55r ield 1.55r	Vert. X uff\RI Pla n High 80 n High 80 ed to ope	Horiz. X Dyback File MHz - 1 MHz - 1	Vert. X es FT\CH 000 MHz 000 MHz	Horiz. X 11\80-100 H 3Vm.c V 3Vm.c	Vert. X 0 MHz\80 rf	Horiz. X	Vert. N/A Hz (Oct 2	Horiz. N/A 2010)\ we	Vert. N/A re used:	Hor
Range (MHz) 80-1000 est files used for e following cali 2.5m tip 2.5m tip	V/m 3 this run: oration file of Antenr of Antenr	Vert. X es from U na to the f na to the f nat the un	Horiz. X :\EMC St ield 1.55r ield 1.55r ield 1.55r	Vert. X uff\RI Pla n High 80 n High 80 ed to ope	Horiz. X Dyback File MHz - 1 MHz - 1	Vert. X es FT\CH 000 MHz 000 MHz	Horiz. X 11\80-100 H 3Vm.c V 3Vm.c	Vert. X 0 MHz\80 rf	Horiz. X	Vert. N/A Hz (Oct 2	Horiz. N/A 2010)\ we	Vert. N/A re used:	Hor
Range (MHz) 80-1000 est files used for e following cali 2.5m tip 2.5m tip	V/m 3 this run: oration file of Antenr of Antenr	Vert. X es from U na to the f na to the f nat the un	Horiz. X :\EMC St ield 1.55r ield 1.55r ield 1.55r	Vert. X uff\RI Pla n High 80 n High 80 ed to ope	Horiz. X Dyback File MHz - 1 MHz - 1	Vert. X es FT\CH 000 MHz 000 MHz	Horiz. X 11\80-100 H 3Vm.c V 3Vm.c	Vert. X 0 MHz\80 rf	Horiz. X	Vert. N/A Hz (Oct 2	Horiz. N/A 2010)\ we	Vert. N/A re used:	Hor
Range (MHz) 80-1000 est files used for e following cali 2.5m tip 2.5m tip	V/m 3 this run: oration file of Antenr of Antenr	Vert. X es from U na to the f na to the f nat the un	Horiz. X :\EMC St ield 1.55r ield 1.55r ield 1.55r	Vert. X uff\RI Pla n High 80 n High 80 ed to ope	Horiz. X Dyback File MHz - 1 MHz - 1	Vert. X es FT\CH 000 MHz 000 MHz	Horiz. X 11\80-100 H 3Vm.c V 3Vm.c	Vert. X 0 MHz\80 rf	Horiz. X	Vert. N/A Hz (Oct 2	Horiz. N/A 2010)\ we	Vert. N/A re used:	Hor
Range (MHz) 80-1000 est files used for e following cali 2.5m tip 2.5m tip	V/m 3 this run: oration file of Antenr of Antenr	Vert. X es from U na to the f na to the f nat the un	Horiz. X :\EMC St ield 1.55r ield 1.55r ield 1.55r	Vert. X uff\RI Pla n High 80 n High 80 ed to ope	Horiz. X Dyback File MHz - 1 MHz - 1	Vert. X es FT\CH 000 MHz 000 MHz	Horiz. X 11\80-100 H 3Vm.c V 3Vm.c	Vert. X 0 MHz\80 rf	Horiz. X	Vert. N/A Hz (Oct 2	Horiz. N/A 2010)\ we	Vert. N/A re used:	Hori
Range (MHz) 80-1000 est files used for the following cali 2.5m tip 2.5m tip Note: An "X" ir	V/m 3 this run: oration file of Antenr of Antenr	Vert. X es from U na to the f na to the f nat the un	Horiz. X :\EMC St ield 1.55r ield 1.55r ield 1.55r	Vert. X uff\RI Pla n High 80 n High 80 ed to ope	Horiz. X Dyback File MHz - 1 MHz - 1	Vert. X es FT\CH 000 MHz 000 MHz	Horiz. X 11\80-100 H 3Vm.c V 3Vm.c	Vert. X 0 MHz\80 rf	Horiz. X	Vert. N/A Hz (Oct 2	Horiz. N/A 2010)\ we	Vert. N/A re used:	Hori
Range (MHz) 80-1000 est files used for the following cali 2.5m tip 2.5m tip	V/m 3 this run: oration file of Antenr of Antenr	Vert. X es from U na to the f na to the f nat the un	Horiz. X :\EMC St ield 1.55r ield 1.55r ield 1.55r	Vert. X uff\RI Pla n High 80 n High 80 ed to ope	Horiz. X Dyback File MHz - 1 MHz - 1	Vert. X es FT\CH 000 MHz 000 MHz	Horiz. X 11\80-100 H 3Vm.c V 3Vm.c	Vert. X 0 MHz\80 rf	Horiz. X	Vert. N/A Hz (Oct 2	Horiz. N/A 2010)\ we	Vert. N/A re used:	Hori
Range (MHz) 80-1000 est files used for the following cali 2.5m tip 2.5m tip Note: An "X" ir	V/m 3 this run: oration file of Antenr of Antenr	Vert. X es from U na to the f na to the f nat the un	Horiz. X :\EMC St ield 1.55r ield 1.55r	Vert. X uff\RI Pla n High 80 n High 80 ed to ope	Horiz. X Dyback File MHz - 1 MHz - 1	Vert. X es FT\CH 000 MHz 000 MHz	Horiz. X 11\80-100 H 3Vm.c V 3Vm.c	Vert. X 0 MHz\80 rf	Horiz. X	Vert. N/A Hz (Oct 2	Horiz. N/A 2010)\ we	Vert. N/A re used:	Hori
Range (MHz) 80-1000 est files used for he following cali 2.5m tip 2.5m tip	V/m 3 this run: oration file of Antenr of Antenr	Vert. X es from U na to the f na to the f nat the un	Horiz. X :\EMC St ield 1.55r ield 1.55r	Vert. X uff\RI Pla n High 80 n High 80 ed to ope	Horiz. X Dyback File MHz - 1 MHz - 1	Vert. X es FT\CH 000 MHz 000 MHz	Horiz. X 11\80-100 H 3Vm.c V 3Vm.c	Vert. X 0 MHz\80 rf	Horiz. X	Vert. N/A Hz (Oct 2	Horiz. N/A 2010)\ we	Vert. N/A re used:	Hor

pany		
quiti Networks	Job Number:	J83025
Cam	T-Log Number:	T83139
	Account Manager:	Susan Pelzl
nifer Sanchez		
24	Environment:	Radio
qı Ca	iti Networks am ifer Sanchez	iti Networks Job Number: am T-Log Number: Account Manager: fer Sanchez




	Client:	Ubiquiti Networks			Job N	lumber:	J83025	
		AirCam					T83139	
					Account M	anager:	Susan Pelzl	
		Jennifer Sanchez						
Imm	unity Standard(s):	KN24			Enviro	onment:	Radio	
		Electrical F	ast Transier	nt/Burst (EF	Г/В) (KN 6100	0-4-4))	
	pecific Details							
C	bjective: The objective: The objective: I he o		ession is to perform	n final qualification	testing of the EUT v	with resp	pect to the specificat	ion
	A T 5/15/001	1 10.12	Config. Used:	1				
Date	e of Test: 5/15/201	1 10.15	coning. Oscu.	1				
Test E	Engineer: Chris Gr	oat	Config Change:	none				
Test E		oat	•	none				
Test E Test I	Engineer: Chris Gr Location: Fremont	oat EMC Lab #1	Config Change:	none				
Test E Test I Genera	Engineer: Chris Gr Location: Fremont al Test Configu	oat EMC Lab #1 Jration	Config Change: EUT Voltage:	none 220V/60Hz	a nower cord was u	sed betu	ween the FLIT's now	ər no
Test E Test I Genera The EUT	Engineer: Chris Gr Location: Fremont al Test Configu	oat EMC Lab #1 uration ed 10 cm above a	Config Change: EUT Voltage: ground reference	none 220V/60Hz plane. A 0.5m lon			veen the EUT's pow	
Test E Test I Genera The EUT	Engineer: Chris Gr Location: Fremont al Test Configu system was locat coupling/decouplin	oat EMC Lab #1 uration ed 10 cm above a g network. Interfe	Config Change: EUT Voltage: ground reference rence was coupled	none 220V/60Hz plane. A 0.5m lon d onto the cables c		ts identif	fied in the test data t	
Test E Test I Genera The EUT	Engineer: Chris Gr Location: Fremont al Test Configu system was locat coupling/decouplin	oat EMC Lab #1 uration ed 10 cm above a g network. Interfe	Config Change: EUT Voltage: ground reference rence was coupled	none 220V/60Hz plane. A 0.5m lon d onto the cables c	onnected to the port	ts identif	fied in the test data t	
Test E Test I Genera The EUT nd the o sing the	Engineer: Chris Gr Location: Fremont al Test Configu system was locat coupling/decouplin	oat EMC Lab #1 uration ed 10 cm above a g network. Interfe , with a maximum	Config Change: EUT Voltage: ground reference rence was coupled	none 220V/60Hz plane. A 0.5m lon d onto the cables c	onnected to the port	ts identif	fied in the test data t	
Test E Test I Genera The EUT nd the o sing the	Engineer: Chris Gr Location: Fremont al Test Configu system was locat coupling/decouplin e capacitive trench nt Conditions:	oat EMC Lab #1 uration ed 10 cm above a g network. Interfe , with a maximum	Config Change: EUT Voltage: ground reference rence was coupled	none 220V/60Hz plane. A 0.5m lon d onto the cables c	onnected to the port	ts identif	fied in the test data t	
Test E Test I Genera The EUT and the a using the	Engineer: Chris Gr Location: Fremont al Test Configu system was locat coupling/decouplin e capacitive trench nt Conditions: Tem	oat EMC Lab #1 uration ed 10 cm above a g network. Interfe , with a maximum perature: 22	Config Change: EUT Voltage: ground reference rence was coupled length of 0.5m of c	none 220V/60Hz plane. A 0.5m lon d onto the cables c	onnected to the port	ts identif	fied in the test data t	
Test E Test I Genera The EUT and the o sing the	Engineer: Chris Gr Location: Fremont al Test Configu system was locat coupling/decouplin e capacitive trench nt Conditions: Tem Rel. I	oat EMC Lab #1 uration ed 10 cm above a g network. Interfe , with a maximum perature: 22	Config Change: EUT Voltage: ground reference rence was coupled length of 0.5m of c	none 220V/60Hz plane. A 0.5m lon d onto the cables c	onnected to the port	ts identif	fied in the test data t	
Test E Test I Genera The EUT and the o sing the	Engineer: Chris Gr Location: Fremont al Test Configu system was locat coupling/decouplin e capacitive trench nt Conditions: Tem	oat EMC Lab #1 uration ed 10 cm above a g network. Interfe , with a maximum perature: 22 Humidity: 33	Config Change: EUT Voltage: ground reference rence was coupled length of 0.5m of c	none 220V/60Hz plane. A 0.5m lon d onto the cables c cable between the	onnected to the port interface port and th	ts identif	fied in the test data t	
Test E Test I Genera The EUT and the o sing the Ambie	Engineer: Chris Gr Location: Fremont al Test Configu system was locat coupling/decouplin e capacitive trench nt Conditions: Tem Rel. I	oat EMC Lab #1 uration ed 10 cm above a g network. Interfe , with a maximum perature: 22 Humidity: 33	Config Change: EUT Voltage: ground reference rence was coupled length of 0.5m of c °C %	none 220V/60Hz plane. A 0.5m lon d onto the cables of cable between the Performan	onnected to the port interface port and th	ts identif	fied in the test data t	
Test E Test I Genera The EUT and the o using the Ambie	Engineer: Chris Gr Location: Fremont al Test Configu system was locat coupling/decouplin e capacitive trench nt Conditions: Tem Rel. I ary of Results	oat EMC Lab #1 uration ed 10 cm above a g network. Interfe , with a maximum perature: 22 Humidity: 33	Config Change: EUT Voltage: ground reference rence was coupled length of 0.5m of c °C %	none 220V/60Hz plane. A 0.5m lon d onto the cables of cable between the Performan	onnected to the port interface port and th	ts identif	ied in the test data t	
Test E Test I Genera The EUT and the o using the Ambie	Engineer: Chris Gr Location: Fremont al Test Configu system was locat coupling/decouplin e capacitive trench nt Conditions: Tem Rel. I ary of Results	oat EMC Lab #1 uration ed 10 cm above a g network. Interfe , with a maximum perature: 22 Humidity: 33	Config Change: EUT Voltage: ground reference rence was coupled length of 0.5m of c	none 220V/60Hz plane. A 0.5m lon d onto the cables c cable between the	onnected to the port interface port and th	ts identif	ied in the test data t	able
Test E Test I Genera The EUT and the d using the Ambie Rumma Rum #	Engineer: Chris Gr Location: Fremont al Test Configu system was locat coupling/decouplin e capacitive trench nt Conditions: Tem Rel. I ary of Results Port	oat EMC Lab #1 uration ed 10 cm above a g network. Interfe , with a maximum perature: 22 Humidity: 33 Test Required ± 1 kV	Config Change: EUT Voltage: ground reference rence was coupled length of 0.5m of c °C % Level Applied ± 1 kV	none 220V/60Hz plane. A 0.5m lon d onto the cables of cable between the Performan Required	nce Criteria Met / Result	ts identif	ied in the test data t n. Comments	able
Test E Test I Genera The EUT and the c Using the Ambie Ambie Run # 1 Modifie	al Test Configuer: Chris Gr Location: Fremont al Test Configuer system was locat coupling/decouplin e capacitive trench nt Conditions: Tem Rel. I ary of Results Port AC Power	oat EMC Lab #1 uration ed 10 cm above a g network. Interfe , with a maximum perature: 22 Humidity: 33 Test Required ± 1 kV During Testing	Config Change: EUT Voltage: ground reference rence was coupled length of 0.5m of c °C % Level Applied ± 1 kV	none 220V/60Hz plane. A 0.5m lon d onto the cables of cable between the Performan Required	nce Criteria Met / Result	ts identif	ied in the test data t n. Comments	able

Model: Contact: Immunity Standard(s): Run #1: EFT/B Testing W Repetition Fre App Loca Powe AC Powe AC Powe Line + Neutral + (3-Wire AC	Jbiquiti Networks AirCam lennifer Sanchez (N24 veform: 5 ns / 50 ns quency: 5 kHz (2.5 kHz ed ion Line Port(s) Protective Earth	est Parame @ 4 kV)		Bur Polarity	st Period:	T-Log Account M Envir 300 ms	Number: Number: Aanager: ronment:	T83139 Susan P	elzl
Model: Contact: Immunity Standard(s): Run #1: EFT/B Testing W Repetition Fre App Loca Powe AC Powe AC Powe Line + Neutral + (3-Wire AC	AirCam lennifer Sanchez KN24 T veform: 5 ns / 50 ns quency: 5 kHz (2.5 kHz ed ion Line Port(s) Protective Earth	@ 4 kV)	Positive	Bur Polarity	st Period:	Account N Envir	lanager:	Susan P	elzl
Immunity Standard(s): Run #1: EFT/B Testing W Repetition Fre App Loca Powe AC Powe Line + Neutral + (3-Wire AC I/ Pc no	T veform: 5 ns / 50 ns quency: 5 kHz (2.5 kHz ed ion Line Port(s)	@ 4 kV)	Positive	Bur Polarity	st Period:	Envir 300 ms	~~~~		
Immunity Standard(s): Run #1: EFT/B Testing W Repetition Fre App Loca Powe AC Powe Cline + Neutral + (3-Wire AC I/ Pc no	T veform: 5 ns / 50 ns quency: 5 kHz (2.5 kHz ed ion Line Port(s)	@ 4 kV)	Positive	Bur Polarity		300 ms	ronment:	Radio	
Run #1: EFT/B Testing W Repetition Fre App Loca Powe AC Powe Line + Neutral + (3-Wire AC I/ Pc no	T veform: 5 ns / 50 ns quency: 5 kHz (2.5 kHz ed ion Line Port(s) Protective Earth	@ 4 kV)	Positive	Bur Polarity		300 ms	onment:	Radio	
W Repetition Free App Loca Powe <u>AC Powe</u> Line + Neutral + (<i>3-Wire AC</i>	veform: 5 ns / 50 ns quency: 5 kHz (2.5 kHz ed ion Line Port(s) Protective Earth	@ 4 kV)	Positive	Bur Polarity					
Repetition Fre App Loca Powe <u>AC Powe</u> Line + Neutral + <i>(3-Wire AC</i> / Powe	veform: 5 ns / 50 ns quency: 5 kHz (2.5 kHz ed ion Line Port(s) Protective Earth	@ 4 kV)	Positive	Bur Polarity					
Repetition Fre App Loca Powe <u>AC Powe</u> Line + Neutral + <i>(3-Wire AC</i> / Powe	quency: 5 kHz (2.5 kHz ed ion Line Port(s) Protective Earth			Bur Polarity					
App Loca Powe <u>AC Powe</u> Line + Neutral + <i>(3-Wire AC</i> / Po no	ed ion Line Port(s) Protective Earth			Polarity	st Width:	15 ms			
Line + Neutral + (3-Wire AC N/ Pc no	ion Line Port(s) Protective Earth	Level 1							
Loca Powe <u>AC Powe</u> Line + Neutral + <i>(3-Wire AC</i> // Pc no	ion Line Port(s) Protective Earth	Level 1					Nogotive	Delerity	
Powe AC Powe Line + Neutral + <i>(3-Wire AC</i> / Po no	Line <mark>· Port(s)</mark> Protective Earth	Level 1	(K	\/)			iveyative (k	e Polarity	
AC Powe Line + Neutral + <i>(3-Wire AC</i> / Pc no	Port(s) Protective Earth	Level 1		•)			(1	•)	
Line + Neutral + <i>(3-Wire AC</i> / Po no	Protective Earth		Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4
<i>(3-Wire AC</i> / Po no		0.5	1.0	2.0	4.0	0.5	1.0	2.0	4.0
l/ Pe no		Х	Х			Х	Х		
Pe no	ower Port)								
Pe no									
no)	Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4
	t	0.25	0.5	1.0	2.0	0.25	0.5	1.0	2.0
Noto: An "Y" indicatos th	е								
	at the unit continued to c	norato as ir	atondod	Thoyido	o stroom	was conti	nuquely	dicplayed	on the DC la
	of video stream reported						nuousiy	uspiayeu	
	ded to connect to cables				e product	standard	only req	uires the	test to be
	es exceeding 3m in leng								
Note 1: The interface cabl	s for the I/O ports tested	d were route	ed through	n the capa	acitive tre	nch and t	ested sin	nultaneou	isly.
The fellowing interfect wort									
The following interface port Port(s)	were not tested:				Reason				
LAN, POE	The ports are ir	ntended to c	onnect to	cables le			ith and th	e product	t standard on
	requires the tes							o produco	

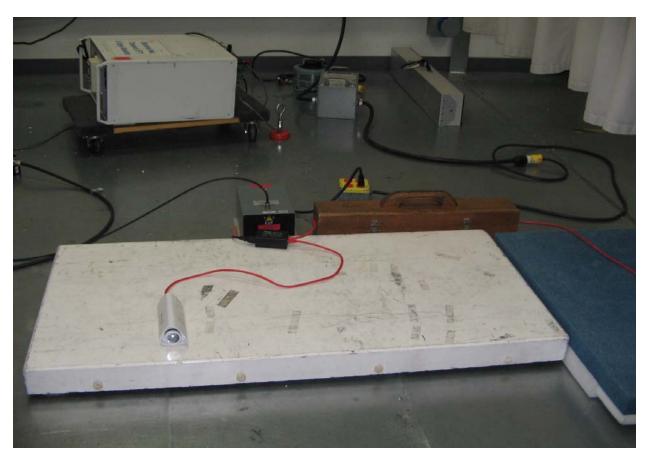
An (17/45	company		
Client:	Ubiquiti Networks	Job Number:	J83025
Model:	AirCam	T-Log Number:	T83139
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Immunity Standard(s):	KN24	Environment:	Radio

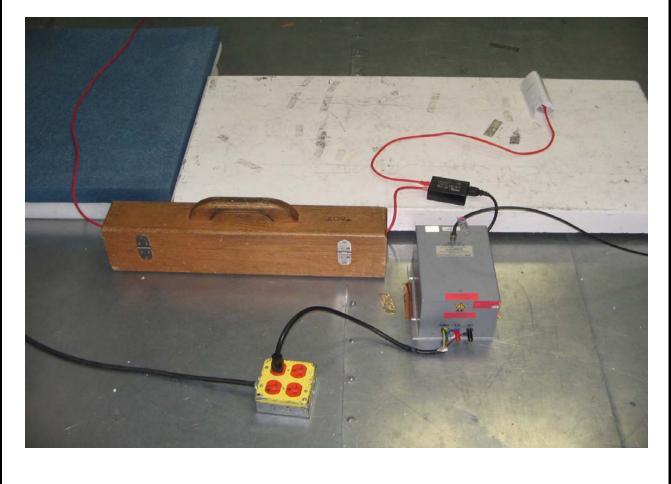
An ATAS	company		
Client:	Ubiquiti Networks	Job Number:	J83025
Model:	AirCam	T-Log Number:	T83139
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Immunity Standard(s):	KN24	Environment:	Radio

Immunii	Model:	Jennifer Sanchez			T-Log N	lumber:	
Immuni							
Immuni					Account M	anager:	Susan Pelzl
Ininiani	ty Standard(S).				Envir	onment:	Radio
					LIVIN	onnent.	Ttutio
			Surge (KN 61000-4	-5)		
Test Sne	cific Details						
-			ssion is to perform	final qualification	n testing of the EUT v	with resp	pect to the specification
Date of	Test: 5/16/201	13:13	Config. Used:	1			
Test Eng	ineer: David Ba	re	Config Change:	None			
Test Loc	ation: Fremont	EMC Lab #1	EUT Voltage:	220V, 60Hz			
General 1	Fest Configu	ration					
	•		e located on a bend	ch.			
Anah!anı	Conditions	Tom	perature: 22	۰ ۲			
Amplent	Conditions:	•					
		Kei. F	lumidity: 34	70			
<u>Summa</u> ry	of Results						
Run #	Port	Test			nce Criteria		Comments
-		Required ± 2 kV CM	Applied ± 2 kV CM	Required	Met / Result		
1	AC Power	± 1 kV DM	± 1 kV DM	В	A / Pass		
	I				11		
		uring Testing	a tostina				
vo modilica	lions were made	e to the EUT durin	gitesting				
Deviation	ns From The	Standard					
	ns were made fr	om the requireme	nts of the standard				

Client: Ubiquiti Networks					Job	Number:	J83025	
Model: AirCam						Number:		
					Account N	Nanager:	Susan P	elzl
Contact: Jennifer Sanchez					Г m d	ronment:	Dadia	
Immunity Standard(s): KN24					EIIVI	onment:	Raulo	
un #1: Surge Immunity, Power Line								
Power Port								
	<u> </u>					1		
	arameters							
Waveform: 1.2/50µS Impedance: 12 Ohms (Comm	on Mode)	2 Ohms	(Difforon	tial Mode)			
		, 2 01113	Dilleren)			
Applied		Positive	Polarity			Negative	e Polarity	
Location			.V)			(k	V)	
Power	Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4
Line	0.5	1.0	2.0	4.0	0.5	1.0	2.0	4.0
Line to Line (Differential Mode)								1
<u>0°</u>	Х	Х			Х	Х		
90° 180°	X	X			X	X		
	X X	X X			X X	X X		
		X			Λ	Λ		
Line to PE (Common Mode) 0°	V	V	Y		V	V	v	
90°	X	X X	X X		X X	X X	X X	
180°	X	X	X		X	X	X	
270°	Х	Х	Х		Х	Х	Х	
Neutral to PE (Common Mode)	Τ							
0°	х	Х	Х		Х	Х	Х	
90°	Х	Х	Х		Х	Х	Х	
180°	Х	Х	Х		Х	Х	Х	
270°	Х	Х	Х		Х	Х	Х	

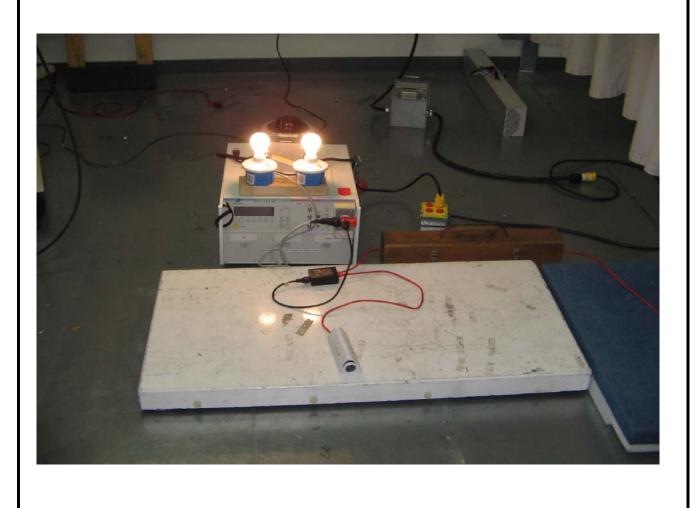
|--|


An LAZA	company		
Client:	Ubiquiti Networks	Job Number:	J83025
Model:	AirCam	T-Log Number:	T83139
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Immunity Standard(s):	KN24	Environment:	Radio

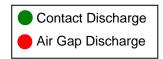

v		5 [*] company				EMC Test Data
		Ubiquiti Networks AirCam				umber: J83025 umber: T83139
		-				inager: Susan Pelzl
Immi	Contact: unity Standard(s):	Jennifer Sanchez KN24			Enviro	nment: Radio
	,		du ata dunan			
		COL	nducted Imn	nunity (KN	01000-4-0)	
-	Decific Details bjective: The objective: The objective	ective of this test sess	sion is to perform	final qualification	testing of the EUT w	ith respect to the specification
Test E	e of Test: 5/15/201 Ingineer: Chris Gr Location: Fremont	oat	Config. Used: 7 Config Change: r EUT Voltage: 2	none		
Ambier	nt Conditions:	Tempe Rel. Hu				
		Rel. Hu	midity: 34 9 munity	%	aco Critoria	
Summa		Rel. Hu - Conducted Im Test Le Required	imidity: 34 S munity evel Applied	%	nce Criteria Met / Result	Comments
	ary of Results	Rel. Hu - Conducted Im Test Le Required 0.15-80MHz	imidity: 34 S munity evel	% Performa		Comments Refer to Individual Run

C	Ellio	tt			El	MC Test Data
		Ubiquiti Networks			Job Number:	J83025
		AirCam			T-Log Number:	T83139
					Account Manager:	Susan Pelzl
		Jennifer Sanchez				
Immunity Standard(s): KN24				Environment:	Radio	
Run #1: (Conducted Susc	eptibility (KN61000-4-6)				
Г	Test Level: 3 Vrms Modulation Details		on Details			
	Step Size:	1 %	Modulating Fr		kHz	
	Dwell time:	2874 ms			AM	
			Depth / D		30%	
				1		
Frequ	uency Range MHz	Port Under Test	Injection Method		Commen	ts
C).15 - 80	AC Power	M3 CDN	The unit co	ntinued to operate as inte	ended The video stream
						PC laptop. There was no
					o stream reported by the	
					1 5	3
Note:						
	As the EUT was to	elecommunications termir	nal equipment, functi	onal checks	of the system were made	e at the spot frequencies
C	detailed in KN24 i	n accordance with Annex	A of the standard.		-	
The follow		s were not tested:				
	Port(s)				leason	
LAN, POE	-				than 3m in length and th	
				cables exce	eding 3m in length. Mar	nufacvturer states that these
		cables are to be	e less than 3 meters.			

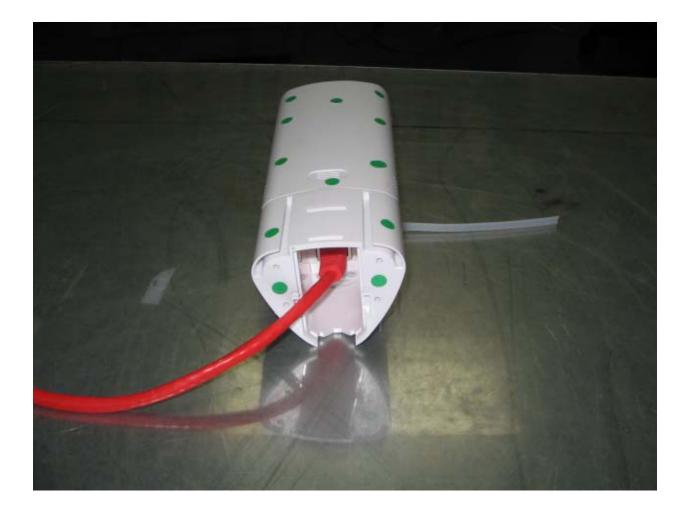
An 47A	company		
Client:	Ubiquiti Networks	Job Number:	J83025
Model:	AirCam	T-Log Number:	T83139
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Immunity Standard(s):	KN24	Environment:	Radio

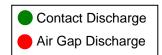

Client: Ubiquiti Networks Job Number: J83025 Model: AirCam T-Log Number: T3139 Account Manager: Susan Pelzl	An //7A	5 company		
	Client:	Ubiquiti Networks	Job Number:	J83025
Account Manager: Susan Pelzi	Model:	AirCam	T-Log Number:	T83139
			Account Manager:	Susan Pelzl
Contact: Jennifer Sanchez	Contact:	Jennifer Sanchez		
Immunity Standard(s): KN24 Environment: Radio	Immunity Standard(s):	KN24	Environment:	Radio

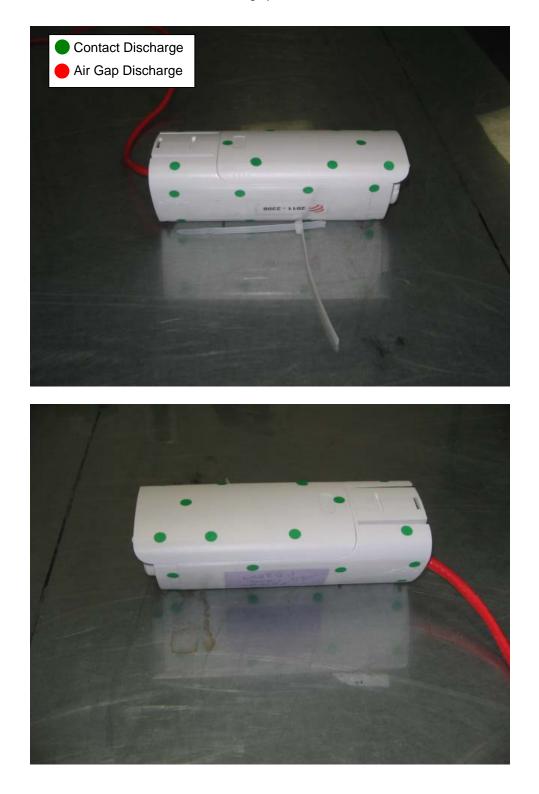
		Ubiquiti Networks				Number:	
	Wodel:	AirCam				y Number: Manager:	Susan Pelzl
	Contact:	Jennifer Sanchez			Account	manager.	
Imm	unity Standard(s):				Env	/ironment:	Radio
		Voltag	je Dips and li	nterrupts (K	(N 61000-4-1	1)	
est S	pecific Details						
•		ective of this test se	ession is to perform	final qualification	testing of the EU	T with resp	pect to the specification
Test E	e of Test: 5/15/201 Engineer: Chris Gr Location: Fremont		5 5		30V/50Hz		
Conora	al Test Config	iration					
	al Test Configu		e located on a non-	-conductive benc	n.		
	•		e located on a non-		h.		
he EUT	•	oort equipment wer	perature: 22	°C	n.		
he EUT	and all local supp	oort equipment wer		°C	h.		
he EUT Ambiei	and all local support	oort equipment wer	perature: 22	°C	n.		
he EUT Ambiei	and all local support of Results	oort equipment wer Temp Rel. F	perature: 22 Humidity: 34	°C %		1	
he EUT Ambiei	and all local support	oort equipment wer Temp Rel. F	perature: 22 Humidity: 34 Level Applied	°C %	h. nce Criteria Met / Result		Comments
he EUT I mbie Iumma Run #	and all local supp nt Conditions: ary of Results Port	oort equipment wer Temp Rel. F Required >95%	perature: 22 Humidity: 34 Level Applied >95%	°C % Performa Required	nce Criteria Met / Result		Hz nominal
he EUT Imbiei	and all local supp nt Conditions: ary of Results Port AC power	oort equipment wer Temp Rel. F Required >95% ½ period	perature: 22 Humidity: 34 Level Applied >95% ½ period	°C % Performa Required B	nce Criteria Met / Result A / Pass	(1/2 perio	Hz nominal d at 60Hz = 8.33 ms)
he EUT A mbiei Summa Run #	and all local supp nt Conditions: ary of Results Port	oort equipment wer Temp Rel. F Required >95%	perature: 22 Humidity: 34 Level Applied >95% ½ period 30%	°C % Performa Required	nce Criteria Met / Result	(½ perio 220V/60	Hz nominal d at 60Hz = 8.33 ms) Hz nominal
he EUT Ambier Summa Run # 1 1	and all local supp ary of Results Port AC power AC power	oort equipment wer Temp Rel. H Required >95% ½ period 30% 30 periods >95%	perature: 22 Humidity: 34 Level Applied >95% 2 period 30% 30 periods >95% >95%	°C % Performa Required B C	nce Criteria Met / Result A / Pass A / Pass	(½ perio 220V/60 (30 perio 220V/60	Hz nominal d at 60Hz = 8.33 ms) Hz nominal nds at 60 Hz = 500 ms) Hz nominal
he EUT Ambier Summa Run # 1	and all local supp nt Conditions: ary of Results Port AC power	oort equipment wer Temp Rel. H Required >95% ½ period 30% 30 periods	perature: 22 Humidity: 34 Level Applied >95% ½ period 30% 30 periods	°C % Performa Required B	nce Criteria Met / Result A / Pass	(½ perio 220V/60 (30 perio 220V/60	Hz nominal d at 60Hz = 8.33 ms) Hz nominal ds at 60 Hz = 500 ms)
he EUT Ambier Summa Run # 1 1 1	and all local supp nt Conditions: ary of Results Port AC power AC power AC power	oort equipment wer Temp Rel. H Required >95% ½ period 30% 30 periods >95%	perature: 22 Humidity: 34 Level Applied >95% ½ period 30% 30 periods >95% 300 periods	°C % Performa Required B C	nce Criteria Met / Result A / Pass A / Pass	(½ perio 220V/60 (30 perio 220V/60	Hz nominal d at 60Hz = 8.33 ms) Hz nominal nds at 60 Hz = 500 ms) Hz nominal
The EUT Ambier Summa Run # 1 1 1 1	and all local supp nt Conditions: ary of Results Port AC power AC power AC power	oort equipment wer Temp Rel. H Required >95% ½ period 30% 30 periods >95% 300 periods	perature: 22 Humidity: 34 Level Applied >95% ½ period 30% 30 periods >95% 300 periods	°C % Performa Required B C	nce Criteria Met / Result A / Pass A / Pass	(½ perio 220V/60 (30 perio 220V/60	Hz nominal d at 60Hz = 8.33 ms) Hz nominal nds at 60 Hz = 500 ms) Hz nominal


Ellio	Elliott EMC Test Data						
Model:	Ubiquiti Networks AirCam Jennifer Sanchez		Job Number: T-Log Number: Account Manager:	T83139			
Immunity Standard(s): KN24			Environment:	Radio			
Run #1: Voltage Dips and Nominal Operatin		Volts 60 Hz]				
Voltage Dips/Time % / ms or % / periods	Port Under Test	Interrupt Voltage	Com	iments			
>95% ½ period	AC Power	0	The unit continued to opera stream was continuously di There was no loss of video monitoring software.	isplayed on the PC laptop. stream reported by the			
30% 30 periods	AC Power	154	The unit continued to opera stream was continuously di There was no loss of video monitoring software.	isplayed on the PC laptop. stream reported by the			
>95% 300 periods	AC Power	0	The unit stopped and reboo stopped(froze) being displa Operator intervention was r Laptop video stream There reported by the monitoring	yed on the PC laptop. needed to restart the PC e was a loss of video stream			

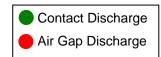
An (17A)	5 company		
Client:	Ubiquiti Networks	Job Number:	J83025
Model:	AirCam	T-Log Number:	T83139
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Immunity Standard(s):	KN24	Environment:	Radio



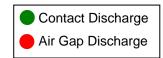

Appendix C ESD Test Points Photographs ESD Test Points Photographs – Front of AirCam Unit



ESD Test Points Photographs – Rear of AirCam Unit



ESD Test Points Photographs – Sides of AirCam Unit


ESD Test Points Photographs – Front of POE Unit

ESD Test Points Photographs – Rear of POE Unit

ESD Test Points Photographs – Sides of POE Unit

End of Report

This page is intentionally blank and marks the last page of this test report.