

Test Certificate

A sample of the following product received on October 11, 2011 and tested on October 12, 13, 15, 16, and 18, 2011 complied with the requirements of,

- Subpart B of Part 15 of FCC Rules for Class B digital devices
- Industry Canada Interference Causing Equipment Standard ICES 003, dated February 2004 (Class B)
- VCCI Regulations For Voluntary Control Measures of radio interference generated by Information Technology Equipment, dated April 2011 (Class B).
- EN 55022:2006 including amendment A1:2007, "Information technology equipment Radio disturbance characteristics Limits and methods of measurement" (Class B)
- AS/NZS CISPR 22:2006 "Information technology equipment Radio disturbance characteristics – Limits and methods of measurement" (Class B)
- EN 55024:1998 including amendments A1:2001 and A2:2003 "Information technology equipment Immunity characteristics, Limits and method of measurement."
- CISPR 24:1997 including amendments A1:2001 and A2:2002 "Information technology equipment – Immunity characteristics, Limits and method of measurement."

given the measurement uncertainties detailed in Elliott report R85223.

Ubiquiti Networks Model AirCam Mini

Michael Findley
Senior EMC Engineer

Ubiquiti Networks

Printed Name

Elliott Laboratories is accredited by the A2LA, certificate number 2016.01, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

Elliott Laboratories www.elliottlabs.com 41039 Boyce Road Fremont, CA. 94538 510-578-3500 Phone 510-440-9525 Fax

EMC Test Report

Class B Information Technology Equipment Class B Digital Device

FCC Part 15; Industry Canada ICES 003 VCCI Regulations 2011 EN 55022:2006 + A1:2007 CISPR 22:2008 ; AS/NZS CISPR 22:2006 EN 55024:1998 +A1:2001 +A2:2003 CISPR 24:1997 + A1:2001 + A2:2002

Model: AirCam Mini

COMPANY: Ubiquiti Networks

91 E. Tasman Drive San Jose, CA 95134

TEST SITE(S): Elliott Laboratories

41039 Boyce Road

Fremont, CA. 94538-2435

REPORT DATE: November 7, 2011

FINAL TEST DATES: October 12, 13, 15, 16, and 18, 2011

TOTAL NUMBER OF PAGES: 73

PROGRAM MGR / TECHNICAL REVIEWER:

Michael Findley

Senior EMC Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

Chandra Morris

Quality Assurance Representative

Elliott Laboratories is accredited by the A2LA, certificate number 2016.01, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

Test Report Report Date: November 7, 2011

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	11-7-2011	First release	-

TABLE OF CONTENTS

REVISION HISTORY	3
TABLE OF CONTENTS	4
SCOPE	
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
INFORMATION TECHNOLOGY EQUIPMENT EMISSIONS TEST RESULTS	8
CONDUCTED EMISSIONS (MAINS PORT)CONDUCTED EMISSIONS (TELECOMMUNICATIONS PORTS)	ة ي
RADIATED EMISSIONS	
INFORMATION TECHNOLOGY EQUIPMENT IMMUNITY TEST RESULTS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
OTHER EUT DETAILS	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTSEUT OPERATION	
EMISSIONS TESTING	
RADIATED AND CONDUCTED EMISSIONS	
RADIATED EMISSIONS CONSIDERATIONS	
CONDUCTED EMISSIONS CONSIDERATIONS	
EMISSIONS MEASUREMENT INSTRUMENTATION	14
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)IMPEDANCE STABILIZATION NETWORK (ISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	15
INSTRUMENT CALIBRATION	15
EMISSIONS TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS (MAINS)RADIATED EMISSIONS (SEMI-ANECHOIC AND/OR OATS TEST ENVIRONMENT)	
Preliminary Scan Prelim	
Final Maximization	
RADIATED EMISSIONS (FREE-SPACE TEST ENVIRONMENT)	18
Preliminary Scan	
Final Maximization	
SAMPLE CALCULATIONS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
IMMUNITY TESTINGGENERAL INFORMATION	
IMMUNITY MEASUREMENT INSTRUMENTATION ELECTROSTATIC DISCHARGE TEST SYSTEM	
ELECTROSTATIC DISCHARGE TEST STSTEM ELECTROMAGNETIC FIELD TEST SYSTEM	
ELECTRICAL FAST TRANSIENT/BURST TEST SYSTEM	
SURGE TEST SYSTEM	20
CONDUCTED INTERFERENCE TEST SYSTEM	20

VOLTAGE VARIATION TEST SYSTEM	
INSTRUMENT CALIBRATION	
IMMUNITY TEST PROCEDURES	22
EQUIPMENT PLACEMENT	
APPLICATION OF ELECTROSTATIC DISCHARGES	
APPLICATION OF ELECTROMAGNETIC FIELD	
APPLICATION OF ELECTRICAL FAST TRANSIENTS	
APPLICATION OF SURGES	23
APPLICATION OF CONDUCTED INTERFERENCE	
APPLICATION OF VOLTAGE VARIATIONS	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	24
APPENDIX B TEST DATA	26
APPENDIX C PRODUCT LABELING REQUIREMENTS	65
APPENDIX D USER MANUAL REGULATORY STATEMENTS	
APPENDIX E ADDITIONAL INFORMATION FOR VCCI	67
APPENDIX F ADDITIONAL INFORMATION FOR AUSTRALIA AND NEW ZEALAND	68
APPENDIX G BASIC AND REFERENCE STANDARDS	69
SUBPART B OF PART 15 OF FCC RULES FOR DIGITAL DEVICES.	69
VCCI REGULATIONS FOR INFORMATION TECHNOLOGY EQUIPMENT, DATED APRIL 2009	69
EN 55022:2006 INCLUDING AMENDMENT A1:2007	70
EN 55024:1998 INCLUDING AMENDMENTS A1:2001 AND A2:2003	
CISPR 24:1997 INCLUDING AMENDMENTS A1:2001 AND A2:2002	72
END OF REPORT	73

SCOPE

Governments and standards organizations around the world have published requirements regarding the electromagnetic compatibility (EMC) of electronic equipment. Testing has been performed on the Ubiquiti Networks model AirCam Mini, pursuant to the following standards.

Standard	Title	Standard Date
FCC Part 15, Subpart B	Radio Frequency Devices	October 2010 as
		Amended
ICES-003, Issue 4	Digital apparatus	2004
VCCI V-3	VCCI Regulations For Voluntary Control Measures of	April 2011
	radio interference generated by Information	
	Technology Equipment	
CISPR 22	Information technology equipment – Radio	2008
	disturbance characteristics – Limits and methods of	
	measurement	
AS/NZS CISPR 22	Information technology equipment – Radio	2006
	disturbance characteristics – Limits and methods of	
	measurement	
EN 55022	Information technology equipment – Radio	2006 + A1:2007
	disturbance characteristics – Limits and methods of	
	measurement	
EN 55024	Information technology equipment – Immunity	1998
	characteristics, Limits and method of measurement	+A1:2001
		+A2:2003
CISPR 24	Information technology equipment – Immunity	1997 +A1:2001
	characteristics, Limits and method of measurement	+A2:2002

All measurements and evaluations have been in accordance with these specifications, test procedures, and measurement guidelines as outlined in Elliott Laboratories test procedures, and in accordance with the standards referenced therein (refer to Appendix G).

OBJECTIVE

The objective of Ubiquiti Networks is to:

- declare conformity with the essential requirements of the EMC directive 2004/108/EC using the harmonized standard(s) referenced in this report;
- declare conformity with the electromagnetic compatibility (EMC) regulatory arrangement of the Australian Communications and Media Authority (ACMA);
- verify compliance with FCC requirements for digital devices and Canada's requirements for digital devices;
- verify compliance to the Japanese VCCI requirements for Information Technology Equipment.

STATEMENT OF COMPLIANCE

The tested sample of Ubiquiti Networks model AirCam Mini complied with the requirements of:

Standard/Regulation	Equipment Type/Class	Standard Date
Subpart B of Part 15 of the FCC Rules (CFR title 47)	Class B	2010 as amended
ICES-003, Issue 4	Class B	2004
VCCI Regulations V-3	Class B	2011
EN 55022	Class B	2006 + A1:2007
CISPR 22 Edition 6	Class B	2008
AS/NZS CISPR 22	Class B	2006
EN55024	-	1998 +A1:2001 +A2:2003
CISPR 24	-	1997 +A1:2001 +A2:2002

This report is suitable for demonstrating compliance with the EMC requirements in Australia and New Zealand. Refer to *Appendix F* for more details.

The test results recorded herein are based on a single type test of the Ubiquiti Networks model AirCam Mini and therefore apply only to the tested sample(s). The sample was selected and prepared by Jennifer Sanchez of Ubiquiti Networks.

Maintenance of compliance is the responsibility of the company. Any modification of the product that could result in increased emissions or susceptibility should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different enclosure, different line filter or power supply, harnessing and/or interface cable changes, etc.).

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

INFORMATION TECHNOLOGY EQUIPMENT EMISSIONS TEST RESULTS

The following emissions tests were performed on the Ubiquiti Networks model AirCam Mini. The measurements were extracted from the data recorded during testing and represent the highest amplitude emissions relative to the specification limits. The complete test data is provided in the appendices of this report.

CONDUCTED EMISSIONS (MAINS PORT)

Frequency Range Operating Voltage	Standard/Section	Requirement	Measurement	Margin	Status	
0.15-30 MHz, 120V, 60Hz	FCC § 15.107(a) VCCI Table 4.2 CISPR 22 Table 2	0.15-0.5 MHz: 66-56 dBµV QP 56-46 dBµV Av 0.5-5.0 MHz:	39.7dBµV @ 0.344MHz	-9.4dB	Complied	
0.15-30 MHz, 230V, 50Hz	EN 55022 Table 2 AS/NZS CISPR 22 Table 2 (Class B)	56 dBµV QP 46 dBµV Av 5.0-30.0 MHz: 60 dBµV QP 50 dBµV Av	5.0-30.0 MHz: 60 dBµV QP	43.8dBμV @ 0.347MHz	-5.2dB	Complied

CONDUCTED EMISSIONS (TELECOMMUNICATIONS PORTS)

The EUT does not have any telecommunication ports.

RADIATED EMISSIONS

Frequency Range	Standard/Section	Requirement	Measurement	Margin	Status
30-1000 MHz	EN 55022 Table 6 CISPR 22 Table 6 FCC §15.109(g) VCCI Table 4.6 AS/NZS CISPR 22 Table 6 Class B	30 – 230, 30 dBµV/m 230 – 1000, 37 dBµV/m (10m limit)	29.7dBµV/m @ 400.02MHz	-7.3dB	Complied
1000-2000 MHz Note 1	FCC §15.109(a) Class B	54.0 dBμV/m Av 74.0 dBμV/m Pk (3m limit)	44.3dBµV/m @ 1200.1MHz	-9.7dB	Complied
1000-6000 MHz Note 1	EN 55022 Table 8 CISPR 22 Table 8 VCCI Table 4.8 (Free-Space Measurement) Class B	1 – 3GHz 50 dBµV/m Av 70 dBµV/m Pk 3 – 6GHz 54 dBµV/m Av 74 dBµV/m Pk (3m limit)	40.8dBμV/m @ 1600.1MHz	-9.2dB	Complied

Note 1 As the highest frequency generated in the EUT was declared to be between 108 MHz and 500 MHz, the upper frequency for radiated measurements was 2 GHz.

Note 2 As the highest frequency of the internal sources of the EUT was declared to be above 1 GHz, the upper frequency for radiated measurements was 5 times the highest frequency or 6 GHz, whichever is less. For this device the highest frequency declared was 400 MHz so the highest frequency measured was 6 GHz.

INFORMATION TECHNOLOGY EQUIPMENT IMMUNITY TEST RESULTS

The following tests were performed on the Ubiquiti Networks model AirCam Mini. The results are based upon performance criteria defined by the company and as detailed in this test report.

Test	Basic Standard	Level Tested	Criterion Required	Criterion Met	Status
ESD	EN 61000-4-2 IEC 61000-4-2	4 kV CD 8 kV AD	В	А	Complied
RF EM Field AM 80% AM 1kHz	EN 61000-4-3 IEC 61000-4-3	80-1000 MHz 3 V/m	Α	А	Complied
EFT, AC Power Port	EN 61000-4-4	± 1 kV	В	Α	Complied
EFT, DC Power Port	IEC 61000-4-4		N/A - Note	1	
EFT, Signal Ports	IEC 01000-4-4	± 0.5 kV	В	Α	Complied
Surge, AC Power Port	EN 61000-4-5 IEC 61000-4-5	1 kV DM, 2 kV CM 1.2/50 µs	В	А	Complied
Surge, DC Power Port	IEC 01000-4-3	N/A – Note 1			
Surge, Signal Ports		N/A – Note 2			
RF, conducted continuous, Signal Ports			N/A – Note	3	
RF, conducted continuous, AC Power Port	EN 61000-4-6 IEC 61000-4-6	0.15-80 MHz, 3 Vrms 80% AM 1kHz	А	А	Complied
RF, conducted continuous, DC Power Port			N/A – Note	1	
Power Frequency Magnetic Field	EN 61000-4-8 IEC 61000-4-8		N/A – Note	4	
Voltage Dips and Interrupts (50Hz)	IEC 61000-4-11	>95%, 0.5 cycles 30%, 25 cycles	B C	A A	Complied
,		>95%, 250 cycles	С	С	
Note 1 The EUT does not have any DC power ports					

Note 2 Ubiquiti Networks stated that the EUT's interface ports are not intended to connect to outdoor cables

Note 3 Ubiquiti Networks stated that the EUT's interface ports are not intended to connect to longer than 3m.

Note 4 Ubiquiti Networks stated that the EUT does not contain any components susceptible to 50Hz magnetic fields.

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below were calculated using the approach described in CISPR 16-4-2:2003 using a coverage factor of k=2, which gives a level of confidence of approximately 95%. The levels were found to be below levels of *U*cispr and therefore no adjustment of the data for measurement uncertainty is required.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
Conducted Emissions	dBuV or dBuA	150kHz – 30MHz	± 2.2 dB
Radiated Electric Field	dBuV/m	30 – 1000 MHz	± 3.6 dB
Radiated Electric Field	ubu v/III	1000 – 40,000 MHz	# ± 2.2 dB # ± 3.6 dB # ± 6.0 dB # ± 6.0 dB # ± 5.98 % # ± 5.98 % # ± 8.60 % # ± 4.92 % # -12.64 %, +13.33 % # ± 2.32 %
Radiated Immunity	V/m	80 – 2700 MHz	- 26.3%, + 29.97%
ESD	KV	N/A	± 8.6%
Fast Transients	Voltage	N/A	± 5.98 %
rasi Transients	Timing	N/A	± 8.60 %
Surge	Voltage	N/A	± 4.92 %
RF Common Mode (CDN method)	Vrms	N/A	-12.64 %, +13.33 %
RF Common Mode (BCI method)	Vrms	N/A	-13.45 %, +15.32 %
Voltage Dips	Voltage	N/A	± 2.32 %
Voltage Dips	Timing	N/A	± 0.08mS

File: R85223

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Ubiquiti Networks model AirCam Mini is a Security camera that is designed to stream live video. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the AirCam Mini is 24 Vdc and 1 Amp. The electrical rating of the POE Adapter is 100-240V, 50-60Hz and 0.5A.

The sample was received on October 11, 2011 and tested on October 12, 13, 15, 16, and 18, 2011. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Ubiquiti Networks	AirCam Mini	Security Camera		N/A
Ubiquiti Networks	UBI-POE-24-5	Carrier POE Adapter		N/A

OTHER EUT DETAILS

The following EUT details should be noted: EUT is a POE (Power Over Ethernet) device.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 9 cm wide by 9 cm deep by 10 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

No local support equipment was used during emissions testing.

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
HP	G42	PC Laptop	584037-001	-

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	_	Cable(s)		
From	То	Description	Shielded/Unshielded	Length(m)
POE(EUT)	POE Injector	CAT5	Shielded	5.0
AC Power(POE Injector)	AC Mains	3 Wire	Shielded	1.0
LAN(POE Injector)	PC Laptop	CAT5	Shielded	10.0

File: R85223

EUT OPERATION

During emissions testing the EUT was streaming live video.

During immunity testing the EUT was steaming live video. Normal operation is indicated by the EUT continuously streaming live video displayed on the PC Laptop and shall be monitored by the PC Laptop.

The performance criteria applied during immunity testing were:

Criterion A:

During and after testing the EUT shall continue to show the video stream on the PC Laptop.

Criterion B:

During application of the transient test, degradation of performance including loss of signal is allowed provided that the EUT self-recovers to normal operation after testing without any operator intervention.

Criterion C:

Loss of function is allowed provided that normal operation can be restored by operator intervention.

EMISSIONS TESTING

RADIATED AND CONDUCTED EMISSIONS

Final test measurements were taken at the Elliott Laboratories Anechoic Chambers listed below. The test sites contain separate areas for radiated and conducted emissions testing. The sites conform to the requirements of ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz and CISPR 16-1-4:2007 - Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances. They are registered with the VCCI and are on file with the FCC and Industry Canada.

Site	Regi	stration Nun	nbers	Location
Site	VCCI	FCC	Canada	Location
Chamber 3	R-1683 G-58 C-1795	769238	IC 2845B-3	41039 Boyce Road Fremont, CA 94538-2435
Chamber 4	G-57	211948	IC 2845B-4	

RADIATED EMISSIONS CONSIDERATIONS

Radiated emissions measurements were made with the EUT powered from a supply voltage within the expected tolerances of each nominal operating voltage/frequency for each geographical regions covered by the scope of the standards referenced in this report.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4 and CISPR 22.

Mains port measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

EMISSIONS MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1:2006 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7 GHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000 MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

Measurements are converted to the field strength at an antenna or voltage developed at the LISN (or ISN) measurement port, which is then compared directly with the appropriate specification limit under software control of the test receivers and spectrum analyzers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted emission measurements utilize a fifty micro-Henry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250-uH CISPR adapter. This network provides for calibrated radio-frequency noise measurements by the design of the internal low-pass and high-pass filters on the EUT and measurement ports, respectively.

IMPEDANCE STABILIZATION NETWORK (ISN)

Telecommunication port conducted emission measurements utilize an Impedance Stabilization Network with a 150-ohm termination impedance and specific longitudinal conversion loss as the voltage monitoring point. This network provides for calibrated radio-frequency noise measurements by the design of the internal circuitry on the EUT and measurement ports, respectively. For current measurements, a current probe with a uniform frequency response and less than 1-ohm insertion impedance is used.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high-amplitude transient events.

ANTENNAS

A bilog antenna or combination of biconnical and log periodic antennas are used to cover the range from 30 MHz to 1000 MHz. Narrowband tuned dipole antennas may be used over the entire 30 to 1000 MHz frequency range for precision measurements of field strength. Above 1000 MHz, horn antennas are used. The antenna calibration factors are included in site factors that are programmed into the test receivers or data collection software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor drive to vary the antenna height.

ANSI C63.4, CISPR 22 and KN22 specify that the test height above ground for table-mounted devices shall be 80 centimeters. Floor-mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material up to 12-mm thick if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the company's specifications. An appendix of this report contains the list of test equipment used and calibration information.

EMISSIONS TEST PROCEDURES

EUT AND CABLE PLACEMENT

The standards require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, CISPR 22 and KN22, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS (MAINS)

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest-amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak-mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord. Emissions that have peak values close to the specification limit are also measured in the quasi-peak and average detection modes to determine compliance except when the amplitude of the emission when measured with the quasi-peak detector is more than 10 dB below the specification limit for average measurements. In this case only quasi-peak measurements are performed.

RADIATED EMISSIONS (SEMI-ANECHOIC and/or OATS TEST ENVIRONMENT)

Radiated emissions measurements in a semi-anechoic environment are performed in two phases (preliminary scan and final maximization). Final maximization may be performed on an OATS.

Preliminary Scan

A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulations specified on page 1. One or more of these are performed with the antenna polarized vertically and one or more of these are performed with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions if required. Other methods used during the preliminary scan for EUT emissions involve scanning with near-field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final Maximization

During final maximization, the highest-amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth that results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions that have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

For measurements above 1GHz every effort is made to ensure the EUT remains within the cone of radiation of the measurement antenna (i.e. 3dB beam-width of the antenna). This may include rotating the product and/or angling the measurement antenna.

RADIATED EMISSIONS (FREE-SPACE TEST ENVIRONMENT)

Anechoic material is placed on the floor between the EUT and the measurement antenna and behind the EUT to ensure that the test site complies with the requirements of CISPR 16 for measurements of radiated field strength above 1GHz in a free-space environment.

The measurements are made in two phases (preliminary scan and final maximization).

Preliminary Scan

A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in one or more given modes of operation. Scans are performed from 1 GHz up to the frequency required with the antenna polarized vertically and repeated with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360° with the measurement antenna set at a height equal to the center height of the EUT. If necessary additional scans are performed with the antenna height adjusted up and down to ensure the measurement antenna illuminates the entire height of the EUT. A peak detector is used for the preliminary scan and results compared to the average limit.

Final Maximization

During final maximization, the highest-amplitude emissions identified in the preliminary scan are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. For small EUT fitting within the beam-width of the measurement antenna, the azimuth resulting in the highest emission is the maintained, and the measurement antenna is positioned at a fixed height for final measurements.

For large EUT not fitting within the beam-width of the measurement antenna, the azimuth that results in the highest emission is then maintained while varying the antenna height from one meter up to the height of the top of the EUT (when necessary). A second rotation of the EUT at the new height may be performed to ensure the highest field strength is obtained.

Peak and average measurements are made of the signal with the level maximized for EUT azimuth and, where necessary, antenna height. Each recorded level is corrected by test software using appropriate factors for cables, connectors, antennas, and preamplifier gain.

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

F_d = Distance Factor in dB

 D_{m} = Measurement Distance in meters

 D_S = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 $L_S = Specification Limit in dBuV/m$

M = Margin in dB Relative to Spec

IMMUNITY TESTING

GENERAL INFORMATION

Final tests were performed at the Elliott Laboratories Test Sites located at 41039 Boyce Road, Fremont, CA 94538-2435. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent CENELEC and IEC standards.

All immunity tests were performed with the host system operating from an AC source voltage within the operating ranges specified for the product, meeting the requirement detailed in EN 55024 / CISPR 24 section 6.1 and, where appropriate, KN24.

IMMUNITY MEASUREMENT INSTRUMENTATION

ELECTROSTATIC DISCHARGE TEST SYSTEM

An ESD generator is used for all testing. It is capable of applying electrostatic discharges in both contact discharge mode to 8 kV and air discharge mode to 16.5 kV in both positive and negative polarities in accordance with the IEC/EN/KN 61000-4-2 basic EMC publication.

ELECTROMAGNETIC FIELD TEST SYSTEM

A signal generator and power amplifiers are used to provide a signal at the appropriate power and frequency to an antenna to obtain the required electromagnetic field at the position of the EUT in accordance with the IEC/EN/KN 61000-4-3 basic EMC publication.

ELECTRICAL FAST TRANSIENT/BURST TEST SYSTEM

An electrical fast transient/burst generator is used for all testing. It is capable of applying the required fast transient immunity test levels to the mains at any phase angle with respect to the mains voltage waveform and to attached cables via a capacitive coupling clamp in accordance with the IEC/EN/KN 61000-4-4 basic EMC publication.

SURGE TEST SYSTEM

A surge generator is used for all testing. It is capable of providing the required surge immunity test levels to the mains port at any phase angle with respect to the mains line voltage waveform or to the signal port in accordance with the IEC/EN/KN 61000-4-5 basic EMC publication.

CONDUCTED INTERFERENCE TEST SYSTEM

A signal generator and power amplifier are used to provide a signal at the appropriate power and frequency through a coupling network to obtain the required electromagnetic signal on the power cord and attached cables of the EUT in accordance with the IEC/EN/KN 61000-4-6 basic immunity standard.

VOLTAGE VARIATION TEST SYSTEM

A power-line disturbance simulator and variable transformer are used for all testing. These two units are, when used together, capable of simulating mains voltage variations between 0 and 100% for periods up to 100 seconds in duration in accordance with the IEC/EN/KN 61000-4-11 basic EMC standard.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the company's specifications. An appendix of this report contains the list of test equipment used and calibration information.

IMMUNITY TEST PROCEDURES

EQUIPMENT PLACEMENT

The basic standards for evaluating immunity to electrostatic discharges specify that a tabletop EUT shall be placed on a non-conducting table 80 centimeters above a ground reference plane and that floor-mounted equipment shall be placed on an insulating support approximately 10 centimeters above a ground plane. During the tests, the EUT is positioned over a ground reference plane in conformance with this requirement. For tabletop equipment, a 1.6 by 0.8 meter metal sheet is placed on the table and connected to the ground plane via a metal strap with two 470-kOhm resistors in series. The EUT and attached cables are isolated from this metal sheet by 0.5-millimeter thick insulating material.

The basic standards for evaluating immunity to radiated electric fields specify that a tabletop EUT be placed on a non-conducting table 80 centimeters high and that floor-mounted equipment may be mounted on non-conductive supports 0.05 to 0.15m high. During the IEC 61000-4-3 tests, the EUT is positioned in a shielded anechoic test chamber to reduce reflections from the internal surfaces of the chamber.

The basic standards for evaluating immunity electrically fast transient bursts specify that the EUT and attached cables be placed on an insulating support 10 centimeters above a ground reference plane. During the tests, the EUT was positioned on a table with a ground reference plane or on the floor in conformance with this requirement.

The basic standards for evaluating immunity to surge transients do not specify positioning of the EUT. The EUT was therefore placed on a table or on the floor.

The basic standards for evaluating immunity to conducted rf disturbances specify that the EUT be placed on an insulating support 10 centimeters above a ground reference plane and that the attached cables be maintained between 30 and 50 millimeters above this plane where possible. During the tests, the EUT was positioned on a table with a ground reference plane or on the floor in conformance with this requirement.

The basic standards for evaluating immunity to voltage dips and interruptions do not specify positioning of the EUT. The EUT was therefore placed on a table or on the floor.

APPLICATION OF ELECTROSTATIC DISCHARGES

The points of application of the test discharges directly to the EUT are determined after consideration of the parts of the EUT that are accessible to the operator during normal operation. Contact and air discharges are applied to the EUT, contact discharges to conducting surfaces and air-gap discharges to insulating surfaces. Contact discharges are also applied to the coupling planes to simulate nearby ESD events.

APPLICATION OF ELECTROMAGNETIC FIELD

The electromagnetic field is established at the front edge of the EUT.

The frequency range is swept through the frequency range of the test using a power level necessary to obtain the required field strength at the EUT. The field is amplitude modulated using a 1-kHz sine wave to a depth of 80% for the swept frequency test in accordance with the applicable basic standard(s).

The test is repeated with each of the four sides of the EUT facing the field-generating antenna. For small, portable products the test is also performed with the top and bottom sides of the EUT facing the antenna.

APPLICATION OF ELECTRICAL FAST TRANSIENTS

The application of the test voltage to the EUT is made to the cable connected to the power port under test via discrete capacitors and through a capacitive coupling clamp in the case of cables connected to signal ports.

APPLICATION OF SURGES

The application of the surge to the EUT's AC or DC power port is made to the power cable attached to the unit via the coupling/decoupling network within the surge generator.

For coupling to unshielded signal lines a coupling network is used to give the correct coupling path (resistor and capacitor/spark gap) to the line under test. Coupling to shielded signal lines is made directly to the shield at the far end of the cable, with the cable length set to the shorter of 20m or the maximum specified cable length. Whenever possible a decoupling network is placed in series with the I/O line under test and the support equipment to ensure that any susceptibility observed is due to the EUT and not the support equipment. Decoupling networks are not available for high-speed signal lines.

APPLICATION OF CONDUCTED INTERFERENCE

The application of the test voltage to the EUT is made through either a coupling-decoupling network (CDN), by direct injection, or through an inductive coupling clamp as appropriate to the cable being tested. The frequency range is swept from 0.15 to 80 MHz using a power level necessary to obtain the specified interference voltage.

APPLICATION OF VOLTAGE VARIATIONS

The applications of the variations in mains voltage to the EUT are made through the AC power cable attached to the unit.

Appendix A Test Equipment Calibration Data

Manufacturer Hewlett Packard SpecAn 9 kHz - 40 GHz, FT (SA40-Red) Hewlett Packard SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Hewlett Packard SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Hewlett Packard SpecAn 9 kHz - 64 GHz, FT (SA40) Blue Hewlett Packard Pescription Pescription Pescription Pescription Program Hewlett Packard Hewlett Packard Pescan 9 kHz - 26, 5GHz Hewlett Packard Hewlett Packard Microwave Preamplifier, 1 - 26,5GHz Hewlett Packard Hewlett Packard Microwave Preamplifier, 1 - 26,5GHz Hewlett Packard Hiromayave Preamplifier, 20 Hz-7 GHz ESIB7 1630 4/13/2012 Hiromayave Preamplifier, 20 Hz-7 GHz ESIB7 1630 4/13/2012 Hiromayave Preamplifier, 20 Hz-7 GHz ESIB7 Hiromayave Preamplifier, 20 Hz-7 GHz Hiromayave Preamplifier, 2	Radiated Emissions, 1	000 - 6,000 MHz, 12-Oct-11			
Hewlett Packard			Model	Asset #	Cal Due
EMCO		Microwave Preamplifier, 1-			
Radiated Emissions	EMCO	Antenna, Horn, 1-18 GHz	3115	1142	8/2/2012
Manufacturer Hewlett Packard Description SpecAn 9 KHz-26.5 GHz, Non- Program Model 8563E Asset # 284 Cal Due 1/13/2012 Hewlett Packard Microwave Preamplifier, 1- 26.5GHz 8449B 870 2/28/2012 EMCO Antenna, Horn, 1-18 GHz 3115 1561 6/22/2012 Schwarz EMI Test Receiver, 20 Hz-7 GHz Biconilog, 30-3000 MHz JB3 2237 7/14/2012 Com-Power Corp. Preamplifier, 30-1000 MHz PAM-103 2380 4/13/2012 Conducted Emissions - AC Power Ports, 13-Oct-11 Manufacturer Model Asset # ESH3 Z2 Cal Due 812 1/18/2012 Rohde & Schwarz Fischer Custom EMI Test Receiver, 20 Hz-7 GHz 1SN, 25A, 150kHz to 30MHz, 25 Amp, ESH3 Z2 812 1/18/2012 Radiated Immunity, 80 - 1,000 MHz, 13-Oct-11 Manufacturer Rohde & Schwarz Description Power Sensor, 1 uW-100 mW, DC-18 GHz, 500hms Model NRV-Z51 Asset # FCC-LISN-50-25-2- 09 Cal Due 9/15/2012 Model & Schwarz Description Power Meter, 500hms FP4036 1496 5/18/2012 Model & Schwarz Biconilog, Antenna 26 MHz - 3 GHz, Radiated Immunity (IPC/EN 61000-4-6), 15-Oct-11 NRVD 1775 N/A <td< td=""><td>Hewlett Packard</td><td>SpecAn 9 kHz - 40 GHz, FT</td><td>8564E (84125C)</td><td>1393</td><td>8/9/2012</td></td<>	Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT	8564E (84125C)	1393	8/9/2012
Hewlett Packard SpecAn 9 KHz-26.5 GHz, Non-Program Hewlett Packard Microwave Preamplifier, 1-26.5 GHz Microwave Preamplifier, 3-1000 MHz Microwave	Radiated Emissions, 3	60 - 2,000 MHz, 13-Oct-11			
Program Microwave Preamplifier, 1- 26.5GHz			<u>Model</u>	Asset #	Cal Due
26.5GHz	Hewlett Packard		8563E	284	1/13/2012
Rohde & Schwarz EMI Test Receiver, 20 Hz-7 GHz SIB7 1630 4/13/2012 Com-Power Corp. Preamplifier, 30-1000 MHz PAM-103 2380 4/13/2012 Preamplifier, 30-1000 MHz PAM-103 2380 4/13/2012 PAM-103 PAM-10	Hewlett Packard		8449B	870	2/28/2012
Sunol Sciences Biconilog, 30-3000 MHz Preamplifier, 30-1000 MHz PAM-103 2380 4/13/2012		Antenna, Horn, 1-18 GHz	3115		6/22/2012
Com-Power Corp. Preamplifier, 30-1000 MHz PAM-103 2380 4/13/2012 Conducted Emissions - AC Power Ports, 13-Oct-11 Model Asset # Cal Due Rohde & Schwarz EMI Test Receiver, 20 Hz-7 GHz ESIB7 1630 4/13/2012 Rohde & Schwarz Fischer Custom LISN, 25A, 150kHz to 30MHz, 25 Amp, PCC-LISN-50-25-2- 2001 9/15/2012 Radiated Immunity, 80 - 1,000 MHz, 13-Oct-11 Model Asset # FCC-LISN-50-25-2- 2001 9/15/2012 Rohde & Schwarz Comm Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms Model Asset # NRV-Z51 1070 5/25/2012 Amplifier Research Werlatione Directional Coupler, 0.1-1000 MHz, 40dB, 500w FP4036 1496 5/18/2012 ETS Lindgren Biconilog Antenna 26 MHz - 3 GHz, 200µV to 1000V 3140B 1775 N/A Rohde & Schwarz GHz, 200µV to 30 W, 9 kHz to 3 GHz, 200µV to 1000V Amplifier, 250W, 80-1000 MHz 250A1000 1809 N/A Conducted Immunity (IEC/EN 61000-4-6), 15-Oct-11 Model Asset # Cal Due Cal Due Rohde & Schwarz Description Model Asset # Cal Due NRVD 11/29/2012					
Model					
Manufacturer Rohde & Schwarz Rohde & Schwarz Fischer Custom Comm Description Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz ESIB 7 Model ESH3 72 Asset # 1630 Cal Due 1/18/2012 Radiated Immunity, 80 - 1,000 MHz, 13-Oct-11 Manufacturer Rohde & Schwarz Description Description Description Description Description DC-18 GHz, 500hms Model NRV-Z51 Asset # 1070 Cal Due 5/25/2012 Amplifier Research Werlatone Field Probe, RF, 0.5 MHz-5 GHz Directional Coupler, 0.1-1000 MHz, 40dB, 500w FP4036 1496 5/18/2012 ETS Lindgren Biconilog Antenna 26 MHz - 3 GHz, Radiated Immunity Only Power Meter, Dual Channel, DC to 40 GHz, 100 pW to 30 W, 9 kHz to 3 GHz, 200µV to 1000V Amplifier Research NRVD 1786 2/28/2012 Conducted Immunity Manufacturer Rohde & Schwarz Description Power Meter, Dual Channel Amplifier, 250W, 80-1000 MHz NRVD 1809 N/A Conducted Immunity Bird Electronics Corp. Rohde & Schwarz Power Meter, Single Channel GHz NRVS 1290 11/29/2011 Instruments For Industry Amplifier, Wideband, 0.01- Industry M3 Network, 150 kHz-230 MHz FCC-801-M3-25A 1579 5/13/2012 Comm. Fischer Custom Comm. M3 Network, 150 kHz-230 MHz FCC-801-M3-25A 1581 5/16/2012	Com-Power Corp.	Preamplifier, 30-1000 MHz	PAM-103	2380	4/13/2012
Rohde & Schwarz Pulse Limiter ESH3 Z2 B12 1/18/2012 Rohde & Schwarz EMI Test Receiver, 20 Hz-7 GHz ESIB7 1630 4/13/2012 1530 4/13/2012 1530 4/13/2012 1530 4/13/2012 1530 4/13/2012 1530 1	Conducted Emissions	- AC Power Ports, 13-Oct-11			
Rohde & Schwarz EMI Test Receiver, 20 Hz-7 GHz ESIB7 FCC-LISN-50-25-2- 2001 9/15/2012 9/	<u>Manufacturer</u>	Description		Asset #	Cal Due
Radiated Immunity, 80 - 1,000 MHz, 13-Oct-11 Manufacturer Power Meter, Dual Channel, DC to 40 GHz, 100 Pwt of 30 W, 9 kHz to 3 GHz, 200µV to 1000V Amplifier Research Power Meter, Single Channel Bird Electronics Corp. Attenuator, 100 Watt, 6 dB Robert Schwarz Rohde & Schwarz Power Meter, Single Channel Bird Electronics Corp. Attenuator, 100 Watt, 6 dB Robert Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Power Meter, Dual Channel DC Rohde & Schwarz Power Meter, Single Channel DC Rohde & Schwarz Power Meter, Single Channel DC Rohde & Schwarz Signal Generator, 9 kHz-1.04 GHz Instruments For Amplifier, Wideband, 0.01-		Pulse Limiter	ESH3 Z2		1/18/2012
Radiated Immunity, 80 - 1,000 MHz, 13-Oct-11 Manufacturer Description NRV-Z51 1070 5/25/2012 5/25/20					
Radiated Immunity, 80 - 1,000 MHz, 13-Oct-11 Manufacturer Rohde & Schwarz Description Power Sensor, 1 uW-100 mW, DC-18 GHz, 500hms Model NRV-Z51 Asset # 1070 Cal Due 5/25/2012 Amplifier Research Werlatone Field Probe, RF, 0.5 MHz-5 GHz Directional Coupler, 0.1-1000 FP4036 1496 5/18/2012 Werlatone Directional Coupler, 0.1-1000 MHz, 40dB, 500w C6021 1533 N/A ETS Lindgren Biconilog Antenna 26 MHz - 3 GHz, Radiated Immunity Only Power Meter, Dual Channel, DC to 40 GHz, 100 pW to 30 W, 9 kHz to 3 GHz, 200µV to 1000V NRVD 1786 2/28/2012 Amplifier Research Amplifier, 250W, 80-1000 MHz 250A1000 1809 N/A Conducted Immunity (IEC/EN 61000-4-6), 15-Oct-11 Manufacturer Model Power Meter, Single Channel Power Meter, Single Channel Power Meter, 100 Watt, 6 dB 100-SA-FFN-06 1397 11/15/2011 Rohde & Schwarz Signal Generator, 9 kHz-1.04 GHz SMY01 1450 10/11/2012 Instruments For Industry Amplifier, Wideband, 0.01- GHz M75 1531 11/15/2011 Instruments For Industry M3 Network, 150 kHz-230 MHz FCC-801-M3-25A 1579 5/13/2012 Comm.				2001	9/15/2012
Manufacturer Description Model Asset # Cal Due Rohde & Schwarz Power Sensor, 1 uW-100 mW, DC-18 GHz, 500hms NRV-Z51 1070 5/25/2012 Amplifier Research Field Probe, RF, 0.5 MHz-5 GHz Werlatone FP4036 1496 5/18/2012 Werlatone Directional Coupler, 0.1-1000 MHz, 40dB, 500w C6021 1533 N/A ETS Lindgren Biconilog Antenna 26 MHz - 3 GHz, Radiated Immunity Only Power Meter, Dual Channel, DC to 40 GHz, 100 pW to 30 W, 9 kHz to 3 GHz, 200μV to 1000V NRVD 1786 2/28/2012 Rohde & Schwarz Amplifier, 250W, 80-1000 MHz 250A1000 1809 N/A Manufacturer Description Model Asset # Cal Due Rohde & Schwarz Power Meter, Single Channel NRVS 1290 11/29/2011 Bird Electronics Corp. Attenuator, 100 Watt, 6 dB 100-SA-FFN-06 1397 11/15/2011 Rohde & Schwarz Signal Generator, 9 kHz-1.04 GHz SMY01 1450 10/11/2012 Instruments For Amplifier, Wideband, 0.01- GHz M75 1531 11/15/2011 Industry 230MHz	Comm	25 Amp,	09		
Manufacturer Description Model Asset # Cal Due Rohde & Schwarz Power Sensor, 1 uW-100 mW, DC-18 GHz, 500hms NRV-Z51 1070 5/25/2012 Amplifier Research Field Probe, RF, 0.5 MHz-5 GHz Werlatone FP4036 1496 5/18/2012 Werlatone Directional Coupler, 0.1-1000 MHz, 40dB, 500w C6021 1533 N/A ETS Lindgren Biconilog Antenna 26 MHz - 3 GHz, Radiated Immunity Only Power Meter, Dual Channel, DC to 40 GHz, 100 pW to 30 W, 9 kHz to 3 GHz, 200μV to 1000V NRVD 1786 2/28/2012 Rohde & Schwarz Amplifier, 250W, 80-1000 MHz 250A1000 1809 N/A Manufacturer Description Model Asset # Cal Due Rohde & Schwarz Power Meter, Single Channel NRVS 1290 11/29/2011 Bird Electronics Corp. Attenuator, 100 Watt, 6 dB 100-SA-FFN-06 1397 11/15/2011 Rohde & Schwarz Signal Generator, 9 kHz-1.04 GHz SMY01 1450 10/11/2012 Instruments For Amplifier, Wideband, 0.01- GHz M75 1531 11/15/2011 Industry 230MHz					
Rohde & Schwarz Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms NRV-Z51 1070 5/25/2012					
Amplifier Research Werlatone Field Probe, RF, 0.5 MHz-5 GHz Werlatone Directional Coupler, 0.1-1000 ETS Lindgren Biconilog Antenna 26 MHz - 3 GHz, Radiated Immunity Only Rohde & Schwarz Power Meter, Dual Channel, DC to 40 GHz, 100 pW to 30 W, 9 kHz to 3 GHz, 200µV to 1000V Amplifier Research Amplifier, 250W, 80-1000 MHz Conducted Immunity (IEC/EN 61000-4-6), 15-Oct-11 Manufacturer Rohde & Schwarz Power Meter, Single Channel Bird Electronics Corp. Attenuator, 100 Watt, 6 dB Rohde & Schwarz Instruments For Rohde & Schwarz Amplifier, Wideband, 0.01- Industry Signal Generator, 9 kHz-1.04 GHz Instruments For Amplifier, Wideband, 0.01- Industry Fischer Custom M3 Network, 150 kHz-230 MHz Rohde & Schwarz Powr Sensor 300 uW - 30 Watts NRV-Z54 NRV-Z5					
Werlatone Directional Coupler, 0.1-1000 MHz, 40dB, 500w C6021 1533 N/A ETS Lindgren Biconilog Antenna 26 MHz - 3 GHz, Radiated Immunity Only 3140B 1775 N/A Rohde & Schwarz Power Meter, Dual Channel, DC to 40 GHz, 100 pW to 30 W, 9 kHz to 3 GHz, 200µV to 1000V NRVD 1786 2/28/2012 Amplifier Research Amplifier, 250W, 80-1000 MHz 250A1000 1809 N/A Conducted Immunity (IEC/EN 61000-4-6), 15-Oct-11 Model Asset # Cal Due Rohde & Schwarz Power Meter, Single Channel NRVS 1290 11/29/2011 Bird Electronics Corp. Attenuator, 100 Watt ,6 dB 100-SA-FFN-06 1397 11/15/2011 Rohde & Schwarz Signal Generator, 9 kHz-1.04 SMY01 1450 10/11/2012 GHz Instruments For Amplifier, Wideband, 0.01- M75 1531 11/15/2011 Industry 230MHz FCC-801-M3-25A 1579 5/13/2012 Comm. Fischer Custom M3 Network, 150 kHz-230 MHz FCC-801-M3-25A 1581 5/16/2012 Comm. Rohde & Schwarz Pwr Sensor 300 uW -		DC-18 GHz, 50ohms			
MHz, 40dB, 500w Biconilog Antenna 26 MHz - 3 GHz, Radiated Immunity Only Power Meter, Dual Channel, DC to 40 GHz, 100 pW to 30 W, 9 kHz to 3 GHz, 200μV to 1000V Amplifier Research Amplifier, 250W, 80-1000 MHz 250A1000 1809 N/A Conducted Immunity (IEC/EN 61000-4-6), 15-Oct-11 Manufacturer Power Meter, Single Channel NRVS 1290 11/29/2011 11/29/2011 11/29/2011 1450 10/11/2012 11/2012 11/2012 11/2014 1450 10/11/2012 11/2014 15/2014 15/2014 15/2014 15/2014 15/2016 15/201					
GHz, Radiated Immunity Only Power Meter, Dual Channel, DC to 40 GHz, 100 pW to 30 W, 9 kHz to 3 GHz, 200μV to 1000V Amplifier Research Amplifier, 250W, 80-1000 MHz 250A1000 1809 N/A Conducted Immunity (IEC/EN 61000-4-6), 15-Oct-11 Manufacturer Power Meter, Single Channel NRVS 1290 11/29/2011 Bird Electronics Corp. Attenuator, 100 Watt, 6 dB 100-SA-FFN-06 1397 11/15/2011 Rohde & Schwarz Signal Generator, 9 kHz-1.04 SMY01 1450 10/11/2012 Instruments For Amplifier, Wideband, 0.01- M75 1531 11/15/2011 Industry 230MHz FCC-801-M3-25A 1579 5/13/2012 Fischer Custom M3 Network, 150 kHz-230 MHz FCC-801-M3-25A 1581 5/16/2012 Comm. Fischer Custom Comm. For Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012 Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012 Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012 Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012 Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012 Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012 Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012 Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012 Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012 Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012 Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012		MHz, 40dB, 500w			
to 40 GHz, 100 pW to 30 W, 9 kHz to 3 GHz, 200µV to 1000V Amplifier Research Amplifier, 250W, 80-1000 MHz 250A1000 1809 N/A Conducted Immunity (IEC/EN 61000-4-6), 15-Oct-11 Manufacturer Description Model NRVS 1290 11/29/2011 Bird Electronics Corp. Attenuator, 100 Watt ,6 dB 100-SA-FFN-06 1397 11/15/2011 Rohde & Schwarz Signal Generator, 9 kHz-1.04 SMY01 1450 10/11/2012 GHz Instruments For Amplifier, Wideband, 0.01- M75 1531 11/15/2011 Industry Pischer Custom M3 Network, 150 kHz-230 MHz FCC-801-M3-25A 1579 5/13/2012 Comm. Fischer Custom M3 Network, 150 kHz-230 MHz FCC-801-M3-25A 1581 5/16/2012 Comm. Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012	· ·	GHz, Radiated Immunity Only			
Amplifier Research kHz to 3 GHz, 200μV to 1000V Amplifier, 250W, 80-1000 MHz 250A1000 1809 N/A Conducted Immunity (IEC/EN 61000-4-6), 15-Oct-11 Model Asset # Cal Due Rohde & Schwarz Power Meter, Single Channel NRVS 1290 11/29/2011 Bird Electronics Corp. Attenuator, 100 Watt ,6 dB 100-SA-FFN-06 1397 11/15/2011 Rohde & Schwarz Signal Generator, 9 kHz-1.04 GHz SMY01 1450 10/11/2012 Instruments For Industry Amplifier, Wideband, 0.01- M75 1531 11/15/2011 Industry M3 Network, 150 kHz-230 MHz FCC-801-M3-25A 1579 5/13/2012 Comm. Fischer Custom M3 Network, 150 kHz-230 MHz FCC-801-M3-25A 1581 5/16/2012 Comm. Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012	Rohde & Schwarz		NRVD	1786	2/28/2012
Conducted Immunity (IEC/EN 61000-4-6), 15-Oct-11 Manufacturer Description Model Asset # Cal Due Rohde & Schwarz Power Meter, Single Channel NRVS 1290 11/29/2011 Bird Electronics Corp. Attenuator, 100 Watt ,6 dB 100-SA-FFN-06 1397 11/15/2011 Rohde & Schwarz Signal Generator, 9 kHz-1.04 GHz SMY01 1450 10/11/2012 Instruments For Industry Amplifier, Wideband, 0.01- 230MHz M75 1531 11/15/2011 Fischer Custom M3 Network, 150 kHz-230 MHz FCC-801-M3-25A 1579 5/13/2012 Comm. Fischer Custom M3 Network, 150 kHz-230 MHz FCC-801-M3-25A 1581 5/16/2012 Comm. Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012					
Manufacturer Description Model Asset # Cal Due Rohde & Schwarz Power Meter, Single Channel NRVS 1290 11/29/2011 Bird Electronics Corp. Attenuator, 100 Watt ,6 dB 100-SA-FFN-06 1397 11/15/2011 Rohde & Schwarz Signal Generator, 9 kHz-1.04 GHz SMY01 1450 10/11/2012 Instruments For Industry Amplifier, Wideband, 0.01- M75 1531 11/15/2011 Industry 230MHz FCC-801-M3-25A 1579 5/13/2012 Comm. Fischer Custom M3 Network, 150 kHz-230 MHz FCC-801-M3-25A 1581 5/16/2012 Comm. Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012	Amplifier Research	Amplifier, 250W, 80-1000 MHz	250A1000	1809	N/A
Rohde & Schwarz Power Meter, Single Channel NRVS 1290 11/29/2011 Bird Electronics Corp. Attenuator, 100 Watt ,6 dB 100-SA-FFN-06 1397 11/15/2011 Rohde & Schwarz Signal Generator, 9 kHz-1.04 GHz SMY01 1450 10/11/2012 Instruments For Industry Amplifier, Wideband, 0.01- M75 1531 11/15/2011 Industry 230MHz FCC-801-M3-25A 1579 5/13/2012 Comm. Fischer Custom M3 Network, 150 kHz-230 MHz FCC-801-M3-25A 1581 5/16/2012 Comm. Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012	Conducted Immunity (IEC/EN 61000-4-6), 15-Oct-11			
Bird Electronics Corp. Attenuator, 100 Watt ,6 dB 100-SA-FFN-06 1397 11/15/2011 Rohde & Schwarz Signal Generator, 9 kHz-1.04 GHz SMY01 1450 10/11/2012 Instruments For Industry Amplifier, Wideband, 0.01- 230MHz M75 1531 11/15/2011 Fischer Custom Comm. M3 Network, 150 kHz-230 MHz FCC-801-M3-25A 1579 5/13/2012 Comm. Fischer Custom M3 Network, 150 kHz-230 MHz FCC-801-M3-25A 1581 5/16/2012 Comm. Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012					
Rohde & Schwarz Signal Generator, 9 kHz-1.04 GHz SMY01 1450 10/11/2012 Instruments For Industry Amplifier, Wideband, 0.01- M75 1531 11/15/2011 Industry 230MHz FCC-801-M3-25A 1579 5/13/2012 Comm. Fischer Custom M3 Network, 150 kHz-230 MHz FCC-801-M3-25A 1581 5/16/2012 Comm. Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012					
Comm. Comm					
Industry 230MHz Fischer Custom M3 Network, 150 kHz-230 MHz FCC-801-M3-25A 1579 5/13/2012 Comm. Fischer Custom M3 Network, 150 kHz-230 MHz FCC-801-M3-25A 1581 5/16/2012 Comm. Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012		GHz			
Comm. M3 Network, 150 kHz-230 MHz FCC-801-M3-25A 1581 5/16/2012 Comm. Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012			M75	1531	11/15/2011
Fischer Custom M3 Network, 150 kHz-230 MHz FCC-801-M3-25A 1581 5/16/2012 Comm. Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012	Fischer Custom	M3 Network, 150 kHz-230 MHz	FCC-801-M3-25A	1579	5/13/2012
Rohde & Schwarz Pwr Sensor 300 uW - 30 Watts NRV-Z54 1788 7/29/2012	Fischer Custom	M3 Network, 150 kHz-230 MHz	FCC-801-M3-25A	1581	5/16/2012
			NRV-Z54	1788	7/29/2012

EFT, 16-Oct-11 Manufacturer Amplifier Research EM Test AG	<u>Description</u> EFT/B Capacitive Coupling clamp EFT Generator	Model EM Test / C ClampHFK UCS 500 M6	Asset # 1583	Cal Due N/A 7/22/2012
VDI, ESD and Surge, 1 Manufacturer Schaffner EM Test AG EM Test AG Elliott Laboratories	8-Oct-11 Description ESD Gun Surge Generator VDI Generator ESD, Vertical Plane, 19-3/4 x 19-3/4	Model NSG-435 UCS 500 M6 UCS 500 M6 ESD, VP, 19-3/4 x 19-3/4	Asset # 1491 1585 1585 1664	Cal Due 2/7/2012 7/22/2012 7/19/2012 N/A

Appendix B Test Data

T85030 Pages 27 - 64

Ellio	tt Ecompany	El	MC Test Data
Client:	Ubiquiti Networks	Job Number:	J83024
Model:	AirCam Mini	T-Log Number:	T85030
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Emissions Standard(s):	FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22	Class:	В
Immunity Standard(s):	EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment:	-

EMC Test Data

For The

Ubiquiti Networks

Model

AirCam Mini

Date of Last Test: 10/18/2011

EII	liott An WAS company
-----	----------------------

EMC Test Data

	All Dates Company		
Client:	Ubiquiti Networks	Job Number:	J83024
Model:	AirCom Mini	T-Log Number:	T85030
	All Call Milli	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22	Class:	В

Conducted Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 10/13/2011 Config. Used: 1
Test Engineer: Hong Stenerson Config Change: None

Test Location: Fremont Chamber #3 EUT Voltage: 230V/50Hz; 120V/60Hz

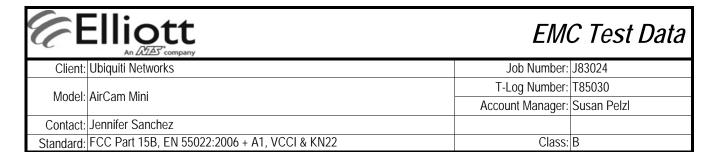
General Test Configuration

For tabletop equipment, the EUT was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

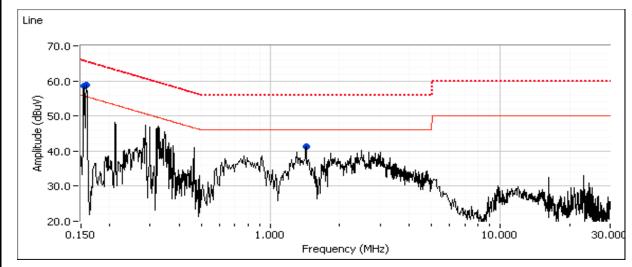
Ambient Conditions: Temperature: 23 °C

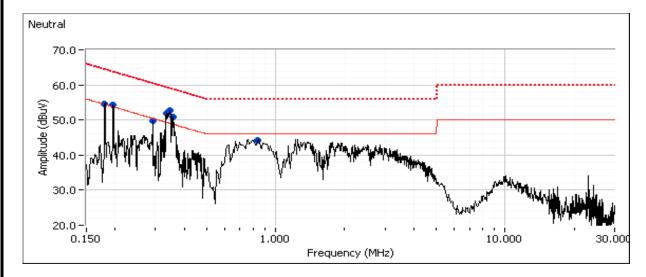
Rel. Humidity: 40 %

Summary of Results


Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power, 230V/50Hz	Class B	Pass	43.8dBµV @ 0.347MHz (-5.2dB)
2	CE, AC Power,120V/60Hz	Class B	Pass	39.7dBµV @ 0.344MHz (-9.4dB)

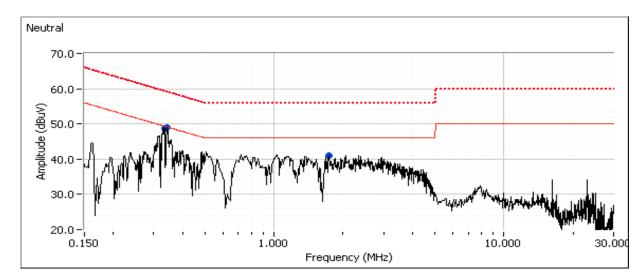
Modifications Made During Testing

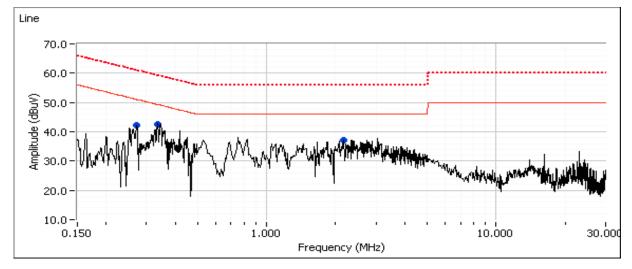

No modifications were made to the EUT during testing


Deviations From The Standard

No deviations were made from the requirements of the standard.

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz

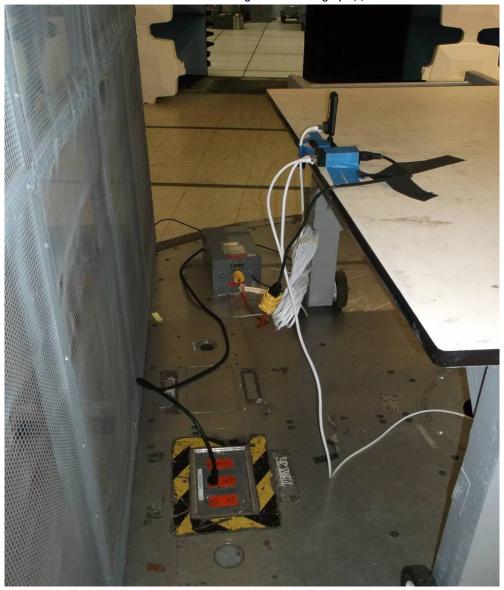

	Ellig	DTT ZAS*company					EM	C Tes
	: Ubiquiti Net	company					Job Number:	J83024
Model	: AirCam Min	:					T-Log Number:	T85030
wodei	All Calli Willi	I					Account Manager:	Susan Pelz
Contact	Jennifer Sai	nchez						
Standard	FCC Part 15	5B, EN 55022	2:2006 + A1,	VCCI & KN2	2		Class:	В
•	ntinued)			, ,				
		ngs captured AC		-scan (peak ss B		s. average limit) Comments		
equency MHz	Level	Line	Limit	SS B Margin	Detector QP/Ave	Comments		
0.159	dBμV 58.8	Line 1	55.5	3.3	Peak			
0.155	58.6	Line 1	55.8	2.8	Peak			
1.423	41.4	Line 1	46.0	-4.6	Peak			
0.347	52.6	Neutral	49.0	3.6	Peak			
0.356	50.9	Neutral	48.8	2.1	Peak			
0.197	54.2	Neutral	53.8	0.4	Peak			
0.180	54.7	Neutral	54.5	0.2	Peak			
0.337	51.8	Neutral	49.3	2.5	Peak			
0.292	49.7	Neutral	50.5	-0.8	Peak			
0.825	44.3	Neutral	46.0	-1.7	Peak			
equency MHz	Level dBµV	verage readi AC Line		ss B Margin	Detector QP/Ave	Comments		
0.347	43.8	Neutral	49.0	-5.2	AVG	AVG (0.10s)		
0.337	43.3	Neutral	49.3	-6.0	AVG	AVG (0.103)		
0.347	52.1	Neutral	59.0	-6.9	QP	QP (1.00s)		
0.337	51.6	Neutral	59.3	-7.7	QP	QP (1.00s)		
0.356	40.2	Neutral	48.8	-8.6	AVG	AVG (0.10s)		
0.356	49.8	Neutral	58.8	-9.0	QP	QP (1.00s)		
0.825	35.5	Neutral	46.0	-10.5	AVG	AVG (0.10s)		
0.825	43.5	Neutral	56.0	-12.5	QP	QP (1.00s)		
0.159	52.5	Line 1	65.5	-13.0	QP	QP (1.00s)		
0.155	52.5	Line 1	65.7	-13.2	QP	QP (1.00s)		
0.180	49.8	Neutral	64.5	-14.7	QP	QP (1.00s)		
0.197	47.7	Neutral	63.7	-16.0	QP	QP (1.00s)		
0.292	34.0	Neutral	50.5	-16.5	AVG	AVG (0.10s)		
0.292	43.2	Neutral	60.5	-17.3	QP	QP (1.00s)		
1.423	28.6	Line 1	46.0	-17.4	AVG	AVG (0.10s)		
1.423	36.7	Line 1	56.0	-19.3	QP	QP (1.00s)		
0.180	33.8	Neutral	54.5	-20.7	AVG	AVG (0.10s)		
0.107	32.2	Neutral Line 1	53.7 55.5	-21.5	AVG	AVG (0.10s)		
	21 ∩		ວວ.ວ	-23.6	AVG	AVG (0.10s)		
0.197 0.159 0.155	31.9 31.2	Line 1	55.7	-24.5	AVG	AVG (0.10s)		

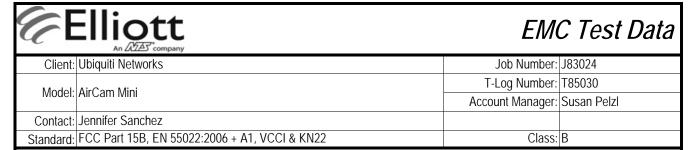


EMC Test Data

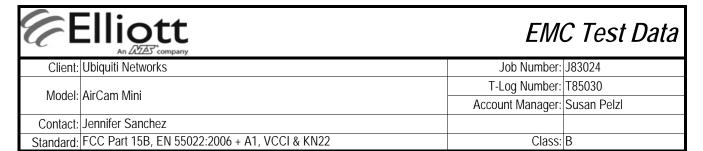
All Dates Company					
Client: Ubiquiti Networks	Job Number:	J83024			
Model: AirCam Mini	T-Log Number:	T85030			
iviouei. Ali Catti iviitti	Account Manager:	Susan Pelzl			
Contact: Jennifer Sanchez					
Standard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22	Class:	В			

Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz






E E)tt					EM	C Test Data
Client:	Ubiquiti Netv	vorks					Job Number:	J83024
							T-Log Number:	T85030
Model:	AirCam Mini						Account Manager:	
Contact:	Jennifer San	nchez					-	
Standard:	FCC Part 15	B, EN 55022	:2 <u>006</u> + A1,	VCCI & KN2	2		Class:	В
Run #2 (Cor Preliminary	•	ngs captured			readings vs	s. average limit)		
Frequency	Level	AC	Cla	ss B	Detector	Comments		
MHz	dΒμV	Line	Limit	Margin	QP/Ave			
0.334	48.8	Neutral	49.3	-0.5	Peak			
0.344	49.0	Neutral	49.1	-0.1	Peak			
1.742	40.9	Neutral	46.0	-5.1	Peak			
0.336	42.6	Line 1	49.3	-6.7	Peak			
0.271	42.1	Line 1	51.1	-9.0	Peak			
2.174	37.0	Line 1	46.0	-9.0	Peak			
	peak and av	verage readir						
Frequency	Level	AC	Clas	ss B	Detector	Comments		
MHz	dΒμV	Line	Limit	Margin	QP/Ave			
	39.7	Neutral	49.1	-9.4	AVG	11/0 (0.40.)		
0.344						AVG (0.10s)	<u> </u>	
0.334	39.9	Neutral	49.4	-9.5	AVG	AVG (0.10s)		
						` '		
0.334	39.9	Neutral	49.4	-9.5	AVG	AVG (0.10s)		
0.334 0.334	39.9 48.8	Neutral Neutral	49.4 59.4	-9.5 -10.6	AVG QP	AVG (0.10s) QP (1.00s)		
0.334 0.334 0.344	39.9 48.8 48.4	Neutral Neutral Neutral	49.4 59.4 59.1	-9.5 -10.6 -10.7	AVG QP QP	AVG (0.10s) QP (1.00s) QP (1.00s)		
0.334 0.334 0.344 0.336	39.9 48.8 48.4 34.1	Neutral Neutral Neutral Line 1	49.4 59.4 59.1 49.3	-9.5 -10.6 -10.7 -15.2	AVG QP QP AVG	AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s)		
0.334 0.334 0.344 0.336 1.742	39.9 48.8 48.4 34.1 30.3	Neutral Neutral Neutral Line 1 Neutral	49.4 59.4 59.1 49.3 46.0	-9.5 -10.6 -10.7 -15.2 -15.7	AVG QP QP AVG AVG	AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s)		
0.334 0.334 0.344 0.336 1.742 0.336	39.9 48.8 48.4 34.1 30.3 43.5	Neutral Neutral Neutral Line 1 Neutral Line 1 Line 1	49.4 59.4 59.1 49.3 46.0 59.3	-9.5 -10.6 -10.7 -15.2 -15.7 -15.8	AVG QP QP AVG AVG	AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s)		
0.334 0.334 0.344 0.336 1.742 0.336 1.742	39.9 48.8 48.4 34.1 30.3 43.5 39.2	Neutral Neutral Neutral Line 1 Neutral Line 1 Neutral Line 1 Neutral	49.4 59.4 59.1 49.3 46.0 59.3 56.0	-9.5 -10.6 -10.7 -15.2 -15.7 -15.8 -16.8	AVG OP QP AVG AVG QP QP	AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s)		
0.334 0.334 0.344 0.336 1.742 0.336 1.742 0.271	39.9 48.8 48.4 34.1 30.3 43.5 39.2 38.3	Neutral Neutral Neutral Line 1 Neutral Line 1 Neutral Line 1 Neutral Line 1	49.4 59.4 59.1 49.3 46.0 59.3 56.0 61.1	-9.5 -10.6 -10.7 -15.2 -15.7 -15.8 -16.8 -22.8	AVG QP QP AVG AVG QP QP QP	AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		


	Elliott An DIES company	EM	C Test Data
Client:	Ubiquiti Networks	Job Number:	J83024
Madalı	AirCam Mini	T-Log Number:	T85030
woden.	All Calli Ivilli	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22	Class:	В

Test Configuration Photograph(s)

EMC Test Data

	An ZAZZS company		
Client:	Ubiquiti Networks	Job Number:	J83024
Model:	AirCom Mini	T-Log Number:	T85030
	All Calli IVIIIII	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22	Class:	В

Radiated Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 10/12/2011 Config. Used: 1
Test Engineer: Vishal Narayan Config Change: None
Test Location: Fremont Chamber #3 EUT Voltage: 230V/50Hz

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing. Any remote support equipment was located outside the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions:

Temperature: 20 °C Rel. Humidity: 41 %

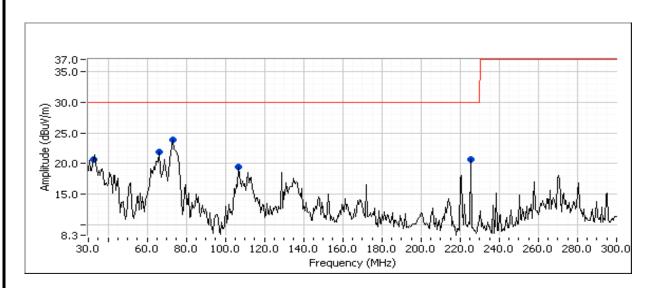
Summary of Results

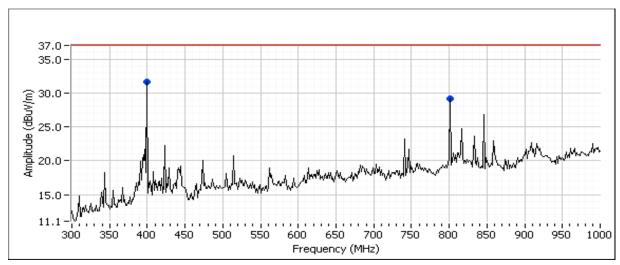
Run #	Test Performed	Limit	Result	Margin
1	Radiated Emissions	Class B	Pass	29.7dBµV/m @ 400.02MHz
	30 - 1000 MHz, Preliminary			(-7.3dB)
2	Radiated Emissions	Class B	Pass	29.7dBµV/m @ 400.02MHz
	30 - 1000 MHz, Maximized			(-7.3dB)
3	Radiated Emissions	FCC Class B	Pass	44.3dBµV/m @ 1200.1MHz
	1 GHz - 2 GHz Maximized			(-9.7dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard


No deviations were made from the requirements of the standard.



	All 2022 Company		
Client:	Ubiquiti Networks	Job Number:	J83024
Model:	AirCom Mini	T-Log Number:	T85030
	All Calli IVIIII	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22	Class:	В

Run #1: Preliminary Radiated Emissions, 30 - 1000 MHz

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	10	10	0.0

Client:	Ubiquiti Networks	Job Number:	J83024
Model:	AirCam Mini	T-Log Number:	T85030
	All Calli IVIIIII	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22	Class:	В

Continuation of Run #1

Preliminary peak readings captured during pre-scan

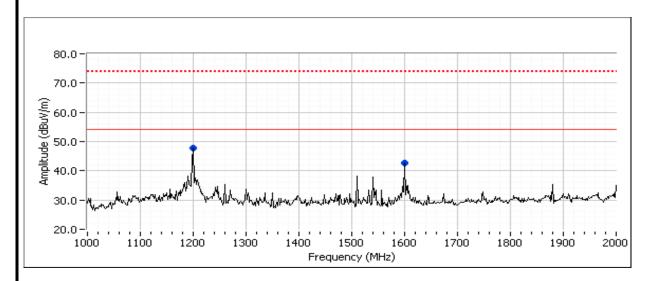
	J	J 1					
Level	Pol	EN55022	2 Class B	Detector	Azimuth	Height	Comments
dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
23.8	V	30.0	-6.2	Peak	75	2.0	
21.9	V	30.0	-8.1	Peak	46	2.0	
20.7	V	30.0	-9.3	Peak	185	1.0	
20.7	Н	30.0	-9.3	Peak	220	3.0	
19.5	V	30.0	-10.5	Peak	52	1.5	
31.6	V	37.0	-5.4	Peak	211	1.0	
29.2	V	37.0	-7.8	Peak	197	3.5	
	dBμV/m 23.8 21.9 20.7 20.7 19.5 31.6	Level Pol dBμV/m v/h 23.8 V 21.9 V 20.7 V 20.7 H 19.5 V 31.6 V	Level Pol EN55022 dBμV/m v/h Limit 23.8 V 30.0 21.9 V 30.0 20.7 V 30.0 20.7 H 30.0 19.5 V 30.0 31.6 V 37.0	Level Pol EN55022 Class B dBμV/m v/h Limit Margin 23.8 V 30.0 -6.2 21.9 V 30.0 -8.1 20.7 V 30.0 -9.3 20.7 H 30.0 -9.3 19.5 V 30.0 -10.5 31.6 V 37.0 -5.4	Level Pol EN55022 Class B Detector dBμV/m v/h Limit Margin Pk/QP/Avg 23.8 V 30.0 -6.2 Peak 21.9 V 30.0 -8.1 Peak 20.7 V 30.0 -9.3 Peak 20.7 H 30.0 -9.3 Peak 19.5 V 30.0 -10.5 Peak 31.6 V 37.0 -5.4 Peak	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Preliminary quasi-peak readings (no manipulation of EUT interface cables)

			<u>, </u>					
Frequency	Level	Pol	EN55022	2 Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
400.020	29.7	V	37.0	-7.3	QP	212	1.0	QP (1.00s)
73.893	20.0	V	30.0	-10.0	QP	76	2.0	QP (1.00s)
800.044	26.9	V	37.0	-10.1	QP	198	3.5	QP (1.00s)
106.758	16.8	V	30.0	-13.2	QP	53	1.5	QP (1.00s)
32.705	16.0	V	30.0	-14.0	QP	186	1.0	QP (1.00s)
65.766	15.5	V	30.0	-14.5	QP	44	2.0	QP (1.00s)
224.563	6.2	Н	30.0	-23.8	QP	221	3.0	QP (1.00s)

Run #2: Maximized Readings From Run #1

Maximized quasi-peak readings (includes manipulation of EUT interface cables)


Frequency	Level	Pol	EN55022	2 Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
400.020	29.7	V	37.0	-7.3	QP	212	1.0	QP (1.00s)
73.893	20.0	V	30.0	-10.0	QP	76	2.0	QP (1.00s)
800.044	26.9	V	37.0	-10.1	QP	198	3.5	QP (1.00s)
106.758	16.8	V	30.0	-13.2	QP	53	1.5	QP (1.00s)
32.705	16.0	V	30.0	-14.0	QP	186	1.0	QP (1.00s)
65.766	15.5	V	30.0	-14.5	QP	44	2.0	QP (1.00s)

	All 2022 Company		
Client:	Ubiquiti Networks	Job Number:	J83024
Model:	AirCom Mini	T-Log Number:	T85030
	All Calli IVIIII	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22	Class:	В

Run #3: Maximized Readings, 1000 - 2000 MHz

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 2000 MHz	3	3	0.0

Preliminary peak readings captured during pre-scan (peak readings vs. average limit)

Frequency	Level	Pol	FCC C	Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1200.060	47.7	V	54.0	-6.3	Peak	157	1.6	
1600.110	42.6	V	54.0	-11.4	Peak	192	1.6	

Final peak and average readings

	man prama and artification gr									
Frequency	Level	Pol	FCC C	Class B	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
1200.080	44.3	V	54.0	-9.7	AVG	166	1.6	RB 1 MHz;VB 10 Hz;Pk		
1200.110	50.7	V	74.0	-23.3	PK	166	1.6	RB 1 MHz;VB 3 MHz;Pk		
1599.760	39.0	V	54.0	-15.0	AVG	176	1.6	RB 1 MHz;VB 10 Hz;Pk		
1599.980	50.2	V	74.0	-23.8	PK	176	1.6	RB 1 MHz;VB 3 MHz;Pk		

Elliott An AZAS company	EMC Test Data
Client: Ubiquiti Networks	Job Number: J83024
Model: AirCam Mini	T-Log Number: T85030
Model. All Call Milli	Account Manager: Susan Pelzl
Contact: Jennifer Sanchez	
Standard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22	Class: B

	All 2022 Company		
Client:	Ubiquiti Networks	Job Number:	J83024
Model:	AirCom Mini	T-Log Number:	T85030
	All Calli IVIIII	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22	Class:	В

Radiated Emissions (Free-Space)

(Elliott Laboratories Fremont Facility, Chamber Configured for Free-Space Measurements)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 10/12/2011 Config. Used: 1
Test Engineer: Chris Groat Config Change: none
Test Location: Fremont Chamber #4 EUT Voltage: 220V/60Hz

General Test Configuration

Anechoic material was placed on the floor between the EUT and the measurement antenna and behind the EUT to ensure that the test site complies with the requirements of CISPR 16 for measurements of radiated field strength above 1GHz in a free-space environment. The EUT and any local support equipment were located on the turntable for radiated emissions testing. Any remote support equipment was located outside the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

The test was performed at a test distance of 3 meters.

Ambient Conditions:

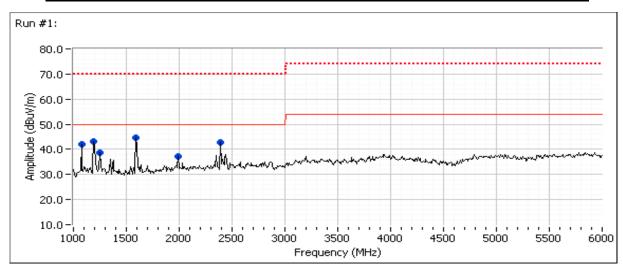
Temperature: 22 °C Rel. Humidity: 44 %

Summary of Results

Run #	Test Performed	d Limit		Margin
1	Free Space Radiated Emissions 1 - 6 GHz, Preliminary	Class B	EVAL	Refer to individual runs
2	Free Space Radiated Emissions 1 - 6 GHz, Maximized	Class B	Pass	40.8dBμV/m @ 1600.1MHz (-9.2dB)

Modifications Made During Testing

No modifications were made to the EUT during testing


Deviations From The Standard

Client:	Ubiquiti Networks	Job Number:	J83024
Madal	AirCam Mini	T-Log Number:	T85030
iviouei.	All Calli IVIIIII	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22	Class:	В

Run #1: Preliminary Readings (1 - 6 GHz, EN 55022)

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 6000 MHz	3	3	0.0

Preliminary peak readings captured during pre-scan (peak readings vs. average limit)

Frequency	Level	Pol	Clas	ss B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2399.990	42.9	Н	50.0	-7.1	Peak	160	1.0	
1599.990	44.8	V	50.0	-5.2	Peak	199	1.0	
1184.070	43.2	V	50.0	-6.8	Peak	150	1.3	
1077.380	42.0	V	50.0	-8.0	Peak	149	1.6	
1253.160	38.5	V	50.0	-11.5	Peak	129	1.3	
1993.280	37.3	V	50.0	-12.7	Peak	175	1.0	

	All 2022 Company		
Client:	Ubiquiti Networks	Job Number:	J83024
Madalı	AirCam Mini	T-Log Number:	T85030
wodei:	All Calli IVIIIII	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22	Class:	В

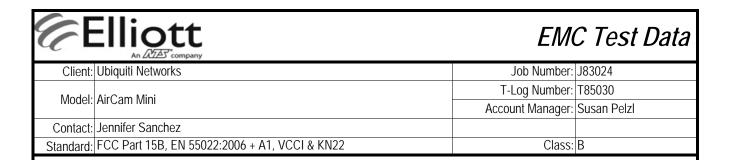
Run #1: Preliminary Readings (1 - 6 GHz, EN 55022)

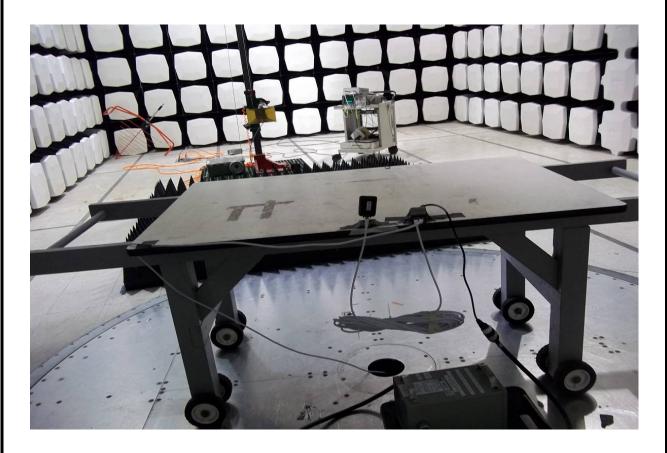
Peak and average readings (including maximization of turntable azimuth and antenna height)

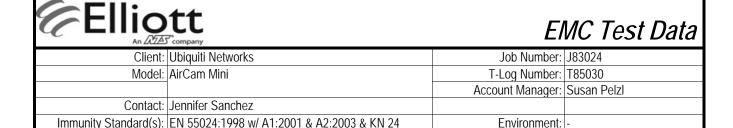
Tour and a vorago roadings (morading maximization of tarmable azimath and antonia holghly								
Frequency	Level	Pol	Clas	ss B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1600.080	40.8	V	50.0	-9.2	AVG	200	1.0	RB 1 MHz;VB 10 Hz;Pk
2400.040	40.1	Н	50.0	-9.9	AVG	159	1.0	RB 1 MHz;VB 10 Hz;Pk
1599.980	49.9	V	70.0	-20.1	PK	200	1.0	RB 1 MHz;VB 3 MHz;Pk
1992.040	28.4	V	50.0	-21.6	AVG	177	1.0	RB 1 MHz;VB 10 Hz;Pk
1251.920	28.1	V	50.0	-21.9	AVG	135	1.3	RB 1 MHz;VB 10 Hz;Pk
1183.530	26.7	V	50.0	-23.3	AVG	123	1.3	RB 1 MHz;VB 10 Hz;Pk
1080.050	26.6	V	50.0	-23.4	AVG	129	1.6	RB 1 MHz;VB 10 Hz;Pk
2399.810	46.3	Н	70.0	-23.7	PK	159	1.0	RB 1 MHz;VB 3 MHz;Pk
1992.990	40.3	V	70.0	-29.7	PK	177	1.0	RB 1 MHz;VB 3 MHz;Pk
1252.000	38.5	V	70.0	-31.5	PK	135	1.3	RB 1 MHz;VB 3 MHz;Pk
1078.780	38.1	V	70.0	-31.9	PK	129	1.6	RB 1 MHz;VB 3 MHz;Pk
1185.840	37.1	V	70.0	-32.9	PK	123	1.3	RB 1 MHz;VB 3 MHz;Pk

Run #2: Maximized Readings from Run #1 (1 - 6 GHz, EN 55022)

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 6000 MHz	3	3	0.0


Final Peak and average readings


(including maximization of turntable azimuth, antenna height, and manipulation of cable positions)


Frequency	Level	Pol	Clas	ss B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1600.080	40.8	V	50.0	-9.2	AVG	200	1.0	RB 1 MHz;VB 10 Hz;Pk
2400.040	40.1	Н	50.0	-9.9	AVG	159	1.0	RB 1 MHz;VB 10 Hz;Pk
1599.980	49.9	V	70.0	-20.1	PK	200	1.0	RB 1 MHz;VB 3 MHz;Pk
1992.040	28.4	V	50.0	-21.6	AVG	177	1.0	RB 1 MHz;VB 10 Hz;Pk
1251.920	28.1	V	50.0	-21.9	AVG	135	1.3	RB 1 MHz;VB 10 Hz;Pk
1183.530	26.7	V	50.0	-23.3	AVG	123	1.3	RB 1 MHz;VB 10 Hz;Pk

	Eliott An WIAS company	EM	C Test Data
Client:	Ubiquiti Networks	Job Number:	J83024
Madalı	AirCam Mini	T-Log Number:	T85030
woder.	All Calli IVIIII	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22	Class	В

Electrostatic Discharge (EN 61000-4-2)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification

listed above.

Date of Test: 10/18/2011 2:11 Config. Used: 1
Test Engineer: Vishal Narayan Config Change: None
Test Location: Fremont EMC Lab #1 EUT Voltage: 230V/50Hz

General Test Configuration

For table-top equipment, the EUT and all local support equipment were located on a 0.5-mm thick insulating layer above a horizontal coupling plane, 80 cm above a ground reference plane.

Unless otherwise stated, ten discharges at each voltage, and polarity, were applied to each test point listed. Contact discharges were applied to coupling planes and conductive surfaces of the EUT. Air discharges were applied to any non-conductive surfaces of the EUT. The VCP was located on the table top for table top devices and 80cm above the ground plane for floor standing equipment.

The determination as to the test point being a part of a conductive or non-conductive surface was based on testing the surface for conductivity using an ohmmeter.

Ambient Conditions: Temperature: 23 °C

Relative Humidity: 45 %

Pressure: 1015 mb

Summary of Results - Electrostatic Discharges

Run # Port		Test Level		Performan	ice Criteria	Comments	
Ruii#	Port	Required Applied		Required	Met / Result	Comments	
1	Enclosure	4kV CD	4kV CD	D	A / Pass		
l	LIICIOSUIE	8kV AD	8kV AD	В	M / P d 55		

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

Client: Ubiquiti Networks					Joh	Number:	183024	
Model: AirCam Mini						Number:		
				,			Susan P	elzl
Contact: Jennifer Sanchez								
Immunity Standard(s): EN 55024:1998 w/ A1:200	1 & A2:20	03 & KN	24		Envi	ronment:	_	
Run #1: Electrostatic Discharge								
Indirect Discharges		Positive	Polarity			Negative	e Polarity	
(To Coupling Planes)		(k	V)			(k	(V)	
Contact	Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4
Mode	2	4	6	8	2	4	6	8
ertical Coupling Plane (VCP) located 10cm from the ont, rear, left and right sides of the EUT	Х	Х			Х	Х		
Horizontal Coupling Plane (HCP) located 10cm from the front, rear, left and right sides of the EUT	Х	Χ			Х	Х		
D'and D'adama	1	Desilies	D. L. St.			Manager	. D. I 'I.	
Direct Discharges			Polarity		Negative Polarity (kV)			
(To the EUT)			V)					
Contact	Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4
Mode	2	4	6	8	2	4	6	8
All Sides All Conductive Surfaces	X	X			X	X		
Connector Shields	Х	Х			X	Х		
	1		Lavel 2	Laval 4			Lavala	Laval 4
Air Discharge	Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4
Mode II Non-Conductive Surfaces	X	X	_	10	X	X	_	10
II Non-Conductive Surfaces	Х	Х	X		X	Х	X	
ables	Х	Х	X		X	Х	Х	
ED's	Х	Х	X		X	Х	Х	

Note: ND: No discharge was possible due to the lack of a discharge path to ground from the test point. HCP: Horizontal Coupling Plane. VCP: Vertical Coupling Plane

Elliott An MADE Company	EMC Test Data
Client: Ubiquiti Networks	Job Number: J83024
Model: AirCam Mini	T-Log Number: T85030
	Account Manager: Susan Pelzl
Contact: Jennifer Sanchez	
Immunity Standard(s): EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment: -

The Date of the Company						
Client:	Ubiquiti Networks	Job Number:	J83024			
Model: AirCam Mini		T-Log Number:	T85030			
		Account Manager:	Susan Pelzl			
Contact:	Jennifer Sanchez					
Immunity Standard(s):	EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment:	-			

Electrical Fast Transient/Burst (EFT/B) (EN 61000-4-4)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification

listed above.

Date of Test: 10/16/2011 14:03 Config. Used: 1
Test Engineer: Chris Groat Config Change: none
Test Location: Fremont EMC Lab #2 EUT Voltage: 230V/50Hz

General Test Configuration

The EUT system was located 10 cm above a ground reference plane. A 0.5m long power cord was used between the EUT's power port and the coupling/decoupling network. Interference was coupled onto the cables connected to the ports identified in the test data tables using the capacitive trench, with a maximum length of 0.5m of cable between the interface port and the trench.

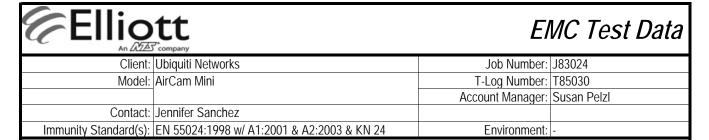
Ambient Conditions:

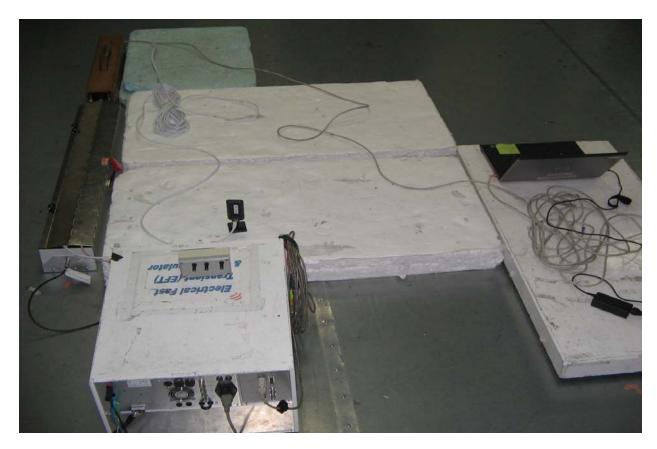
Temperature: 21 °C Rel. Humidity: 34 %

Summary of Results

Run#	Dort	Test Level		Performance Criteria		Commonts
Ruii#	Port	Required	Applied	Required	Met / Result	Comments
1	AC Power	± 1 kV	± 1 kV	В	A / Pass	Refer to Individual Run
1	Signal	± 0.5 kV	± 0.5 kV	В	A / Pass	Refer to Individual Run


Modifications Made During Testing


No modifications were made to the EUT during testing


Deviations From The Standard

Elliott EMC Test Data Job Number: J83024 Client: Ubiquiti Networks Model: AirCam Mini T-Log Number: T85030 Account Manager: Susan Pelzl Contact: Jennifer Sanchez Immunity Standard(s): EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24 Environment: -Run #1: EFT/B Testing **Test Parameters** Burst Period: 300 ms Waveform: 5 ns / 50 ns Repetition Frequency: 5 kHz (2.5 kHz @ 4 kV) Burst Width: 15 ms **Applied** Positive Polarity **Negative Polarity** Location (kV) (kV) Level 4 Level 1 Level 2 Level 3 Level 4 Level 1 Level 2 Level 3 Power Line 2.0 1.0 2.0 0.5 1.0 4.0 0.5 4.0 AC Power Port(s) Line + Neutral + Protective Earth Χ Χ Χ Χ (3-Wire AC Power Port) Level 2 1/0 Level 1 Level 3 Level 4 Level 1 Level 2 Level 3 Level 4 0.25 0.5 1.0 2.0 0.25 0.5 1.0 2.0 Port POE Χ Χ Χ Χ LAN Χ Χ Χ Χ Note: An "X" indicates that the unit continued to operate as intended. Normal operation was indicated by the EUT continuously streaming live video displayed on the PC Laptop. There were no data errors reported by the monitoring software on the PC The interface cables for the I/O ports tested were routed through the capacitive trench and tested simultaneously.

Ellio AN ANTA	T Company	Ei	MC Test Data
Client:	Ubiquiti Networks	Job Number:	J83024
Model:	AirCam Mini	T-Log Number:	T85030
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Immunity Standard(s):	EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment:	-

All Dat	All Dates Company						
Client:	Ubiquiti Networks	Job Number:	J83024				
Model:	AirCam Mini	T-Log Number:	T85030				
		Account Manager:	Susan Pelzl				
Contact:	Jennifer Sanchez						
Immunity Standard(s):	EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment:	-				

Surge (EN 61000-4-5)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification

listed above.

Date of Test: 10/18/2011 2:11 Config. Used: 1
Test Engineer: Vishal Narayan Config Change: None
Test Location: Fremont EMC Lab #1 EUT Voltage: 230V/50Hz

General Test Configuration

The EUT and all local support equipment were located on a non-conductive bench.

Ambient Conditions: Temperature: 23 °C

Rel. Humidity: 44 %

Summary of Results

Run #	Port	Test Level		Performance Criteria		Commonts
Ruii#	FUIT	Required	Applied	Required	Met / Result	Comments
1	AC Power	± 2 kV CM	± 2 kV CM	D	A / Pass	
1	AC FUWEI	± 1 kV DM	± 1 kV DM	D	A / Fass	

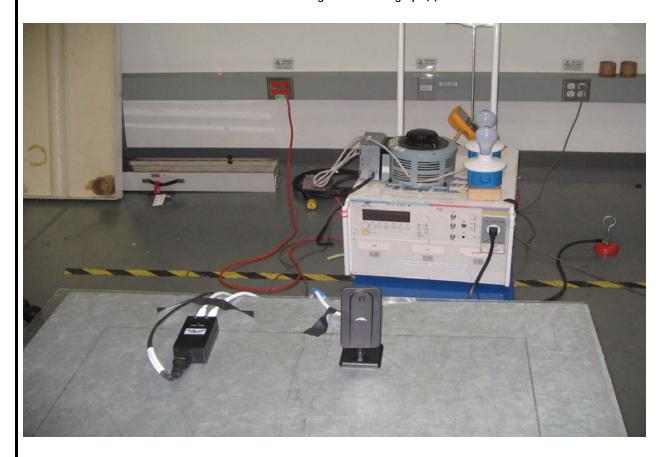
Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

All Day	All Date Company						
Client:	Ubiquiti Networks	Job Number:	J83024				
Model:	AirCam Mini	T-Log Number:	T85030				
		Account Manager:	Susan Pelzl				
Contact:	Jennifer Sanchez						
Immunity Standard(s):	EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment:	-				

Run #1: Surge Immunity, Power Line


AC Power Port

Test Parameters
Waveform: 1.2/50µS
Impedance: 12 Ohms (Common Mode), 2 Ohms (Differential Mode)

Applied		Positive Polarity (kV)			Negative Polarity (kV)			
Location								
Power	Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4
Line	0.5	1.0	2.0	4.0	0.5	1.0	2.0	4.0
Line to Line (Differential Mode)								
0°	Х	Χ			Χ	Χ		
90°	Х	Χ			Χ	Χ		
180°	Х	Χ			Χ	Χ		
270°	Χ	Χ			Χ	Χ		
Line to PE (Common Mode)								
0°	Х	Χ	Χ		Χ	Χ	Χ	
90°	Х	Χ	Χ		Χ	Χ	Χ	
180°	Х	Χ	Χ		Χ	Χ	Χ	
270°	Х	Χ	Χ		Χ	Χ	Χ	
Neutral to PE (Common Mode)								
0°	Χ	Χ	Χ		Χ	Χ	Χ	
90°	Х	Χ	Χ		Χ	Χ	Χ	
180°	Χ	Χ	Χ		Χ	Χ	Χ	
270°	Х	Χ	Х		Χ	Х	Χ	

Note: An "X" indicates that the unit continued to operate as intended. The EUT continuously streaming live video displayed on the PC Laptop. There were no data errors reported by the monitoring software on the PC Laptop.

Ellio AN ANTA	tt Grompany	Ei	MC Test Data
Client:	Ubiquiti Networks	Job Number:	J83024
Model:	AirCam Mini	T-Log Number:	T85030
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Immunity Standard(s):	EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment:	-

All Date	741 Decemberry						
Client:	Ubiquiti Networks	Job Number:	J83024				
Model:	AirCam Mini	T-Log Number:	T85030				
		Account Manager:	Susan Pelzl				
Contact:	Jennifer Sanchez						
Immunity Standard(s):	EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment:	-				

Radiated Immunity (EN 61000-4-3)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification

listed above.

Date of Test: 10/13/2011 Config. Used: 2
Test Engineer: Mehran Birgani Config Change: -

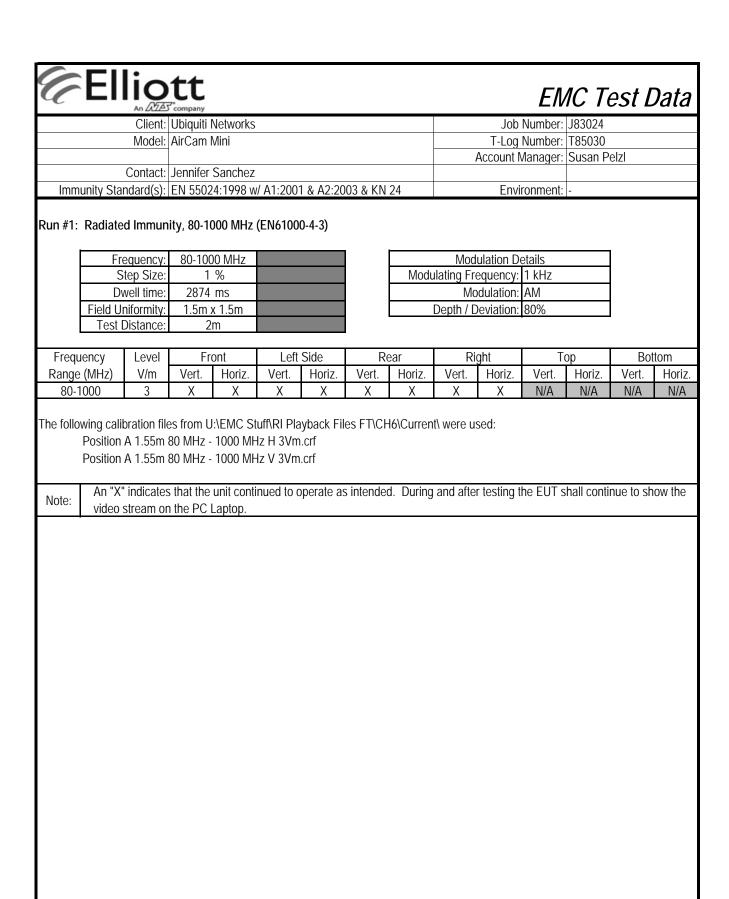
Test Location: Fremont Chamber #6 EUT Voltage: 230V/50Hz

General Test Configuration

The EUT and all local support equipment were located on a turntable in an anechoic chamber. All remote support equipment was located outside the chamber. Interface cabling to the remote support equipment was routed along the floor and, where possible, passed through ferrite clamps at the exit point from the chamber.

Ambient Conditions: Temperature: 18 °C

Rel. Humidity: 42 %


Summary of Results-Radiated Immunity

Run#	Port		Level		nce Criteria	Comments
		Required	Applied	Required	Met / Result	
EN 5502	4 Requirements					
		80-1000 MHz	80-1000 MHz			
1	Enclosure	1kHz 80% AM	1kHz 80% AM	Α	A / Pass	
		3 V/m	3 V/m			

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

Ellio AN LATE	tt Company	EN	AC Test Data
Client:	Ubiquiti Networks	Job Number:	J83024
Model:	AirCam Mini	T-Log Number:	T85030
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Immunity Standard(s):	EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment:	-

All Dat	Company		
Client:	Ubiquiti Networks	Job Number:	J83024
Model:	AirCam Mini	T-Log Number:	T85030
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Immunity Standard(s):	EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment:	-

Conducted Immunity (EN 61000-4-6)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification

listed above.

Date of Test: 10/15/2011 2:58 Config. Used: 1
Test Engineer: Vishal Narayan Config Change: None
Test Location: Fremont EMC Lab #1 EUT Voltage: 230V/50Hz

General Test Configuration

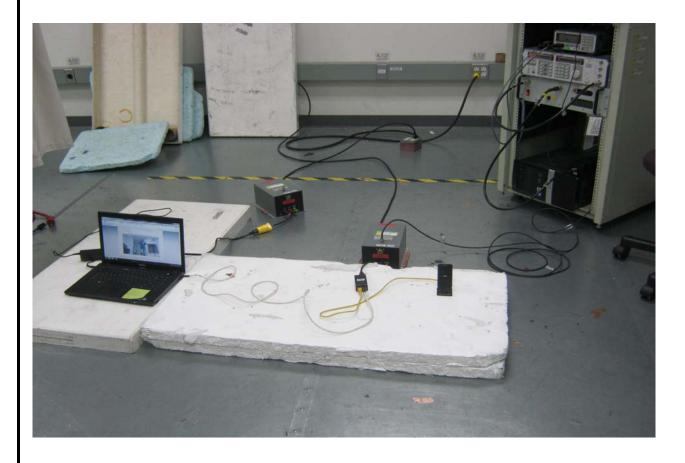
The EUT and all local support equipment were placed on an insulating support 10 cm above a ground reference plane. All interface cables between parts of the EUT (for equipment comprising several units) and to local support equipment were also placed on the insulating support. All interface cabling between the EUT and the coupling and decoupling network(s) were located 3 to 5 cm above the ground reference plane.

Ambient Conditions: Temperature: 23 °C

Rel. Humidity: 44 %

Summary of Results - Conducted Immunity

Г	Run #	Port	Test Level		Performance Criteria		Comments
	Kull#	POIL	Required	Applied	Required	Met / Result	Comments
			0.15-80MHz	0.15-80MHz			
	1	AC power	1kHz 80% AM	1kHz 80% AM	Α	A / Pass	
			3 Vrms	3 Vrms			


Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

ЭГ П: -	44				
Ellio	C Company			El	MC Test Data
	Ubiquiti Networks			Job Number:	J83024
Model:	AirCam Mini			T-Log Number:	
				Account Manager:	Susan Pelzl
	Jennifer Sanchez	04.0.40.0000.0.1/11	0.4		
Immunity Standard(s):	EN 55024:1998 w/ A1:20	01 & A2:2003 & KN	24	Environment:	-
n #1: Conducted Susc	eptibility (EN61000-4-6)				
Test Level:	3 Vrms	Modulatio	n Details		
Step Size:	1 %	Modulating Fre	equency: 1	kHz	
Dwell time:	2874 ms	Mo	dulation:	AM	
		Depth / D	eviation:	80%	
Frequency Range MHz	Port Under Test	Injection Method		Commen	ts
0.15 - 80	AC Power	M3	Note 1		
detailed in EN 550 ie 1: During and after to	elecommunications termin 024 in accordance with An esting the EUT shall contin	nex A of the standar	d.		
e following interface port	s were not tested:				
Port(s)	011			Reason	
nernet				ect to cables less than 3r	
	IStandard Only Te	dulles the test to be	benomea	on cables exceeding 3m	iii iendiii.

Ellio AN ANTA	tt S company	Ei	MC Test Data
Client:	Ubiquiti Networks	Job Number:	J83024
Model:	AirCam Mini	T-Log Number:	T85030
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Immunity Standard(s):	EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment:	-

All Dat	Company		
Client:	Ubiquiti Networks	Job Number:	J83024
Model:	AirCam Mini	T-Log Number:	T85030
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Immunity Standard(s):	EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment:	-

Voltage Dips and Interrupts (EN 61000-4-11)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification

listed above.

Date of Test: 10/17/2011 22:30 Config. Used: 1
Test Engineer: Vishal Narayan Config Change: None
Test Location: Fremont EMC Lab #1 EUT Voltage: 230V/50Hz

General Test Configuration

The EUT and all local support equipment were located on a non-conductive bench.

Ambient Conditions: Temperature: 22 °C

Rel. Humidity: 45 %

Summary of Results

Run #	Port	Test Required	Level Applied	Performar Required	nce Criteria Met / Result	Comments
EN 5502	EN 55024					
1	AC power	>95% ½ period	>95% ½ period	В	// / Dacc	230V/50Hz nominal (½ period at 50Hz = 10 ms)
1	AC power	30% 25 periods	30% 25 periods	С	A / Pass	230V/50Hz nominal (25 periods at 50Hz = 500 ms)
1	AC power	>95% 250 periods	>95% 250 periods	С	C / Pass	230V/50Hz nominal (250 periods at 50Hz = 5 sec)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

Ellio	Company		El	
	Ubiquiti Networks		Job Number:	
Model:	AirCam Mini		T-Log Number:	
Contact:	Jennifer Sanchez		Account Manager:	Susan Pelzi
	EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24		Environment:	-
n #1: Voltage Dips and				
Nominal Operatir	ng Voltage of EUT: 230	O Volts 50 Hz		
Voltage Dips/Time	Γ	T		
6 / ms or % / periods >95%	Port Under Test	Interrupt Voltage	Com	ments
	AC Power	0V	Note 1	
½ period 30%	AC Power	161V	Note 1	
25 periods >95% 250 periods	AC Power	0V	Note 2	

Ellio AN AND AND	Company	El	MC Test Data
Client:	Ubiquiti Networks	Job Number:	J83024
Model:	AirCam Mini	T-Log Number:	T85030
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Immunity Standard(s):	EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment:	-

Appendix C Product Labeling Requirements

The following information has been provided to clarify notification, equipment labeling requirements and information that must be included in the operator's manual. These requirements may be found in the standards/regulations listed in the scope of this report.

Label Location

The required label(s) must be in a *conspicuous location* on the product, which is defined as any location readily visible to the user of the device without the use of tools.

Label Attachment

The label(s) must be *permanently attached* to the product, which is defined as attached such that it can normally be expected to remain fastened to the equipment during the equipment's expected useful life. A paper gum label will generally <u>not</u> meet this condition.

Japanese Class B Label

Industry Canada

For ICES-003 (digital apparatus), the product must be labeled with a notice indicating compliance e.g.

This Class B digital apparatus complies with Canadian ICES-003

Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada

If there is limited space on the product then the text may be placed in the manual.

Appendix D User Manual Regulatory Statements

Where special accessories, such as shielded cables, are required in order to meet the emission limits, appropriate instructions regarding the need to use such accessories must be contained on the first page of text concerned with the installation of the device in the operator's manual.

A requirement by FCC regulations, and recommended for all regulatory markets, is a cautionary statement to the end user that changes or modifications to the device not expressly approved by you, the manufacturer, could void their right to operate the equipment.

United States Class B Manual Statement

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try and correct the interference by one or more of the following measures:

- -Reorient or relocate the receiving antenna.
- -Increase the separation between the equipment and the receiver.
- -Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -Consult the dealer or an experienced radio/TV technician for help.

Note: Additional information about corrective measures may also be provided to the user at the company's option.

The FCC has indicated that the radio interference statement be bound in the same manner as the operator's manual. Thus, a loose-leaf insert page in a bound or center-spine and stapled manual would <u>not</u> meet this condition.

Japanese Class B Manual Statement

この装置は、情報処理装置等電波障害自主規制協議会(VCCI)の基準に基づくクラスB情報技術装置です。この装置は、家庭環境で使用することを目的としていますが、この装置がラジオやテレビジョン受信機に近接して使用されると、受信障害を引き起こすことがあります。

取扱説明書に従って正しい取り扱いをして下さい。

The English translation for the text is: This is Class B product based on the standard of the Voluntary Control Council For Interference by Information Technology Equipment (VCCI). If this used near a radio or television receiver in a domestic environment, it may cause radio interference. Install and use the equipment according to the instruction manual.

Appendix E Additional Information for VCCI

The VCCI requires a notification for each product sold with the VCCI label. A notification letter on your company letterhead with 2 copies of Form 1 must be sent to the VCCI in Japan at the following address:

Voluntary Control Council for Interference by Information Technology Equipment NOA Building, 7th Floor 3-5 Azabudai 2-chome, Minato-ku, Tokyo 106-0041, Japan

You may also submit the form electronically on the VCCI web site http://www.vcci.or.jp/vcci_e/member/index.html. Go to "Documents and Forms, Report of Compliance" in Members only section. Enter your username and password and click "OK". Then click "Please click here if you submit report of compliance electronically" to open the submission form. Fill all required columns and click "CONFIRM" after making sure everything is filled properly.

Appendix F Additional Information for Australia and New Zealand

In Australia, an application to use the C-Tick mark must be made by the importer of the product. The importer must hold a Declaration of Conformity and compliance folder, of which this report forms a part, for each product sold with a C-Tick mark.

The European harmonized standards and international (CISPR/IEC) standards are acceptable for demonstrating compliance with the Australian/New Zealand compliance framework. This is explained in the document "Electromagnetic Compatibility - Information for suppliers of electrical and electronic products in Australia and New Zealand", dated July 2003. While this document is being revised information can be found on the Australian Communications and Media Authority (ACMA) website by following links from their homepage (http://www.acma.gov.au/WEB/HOMEPAGE/pc=HOME) to EMC compliance & labeling regulatory arrangements.

Appendix G Basic and Reference Standards

Subpart B of Part 15 of FCC Rules for digital devices.

FCC Part 15 Subpart B references the use of ANSI C63.4–2003: "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" for the purposes of evaluating the radiated and conducted emissions from digital devices.

VCCI Regulations For Information Technology Equipment, dated April 2009

The VCCI Regulations For Voluntary Control Measures of radio interference generated by Information Technology Equipment make reference to the following National and International standards for the purposes of making measurements. Elliott's test procedures associated with measurements against VCCI rules use these standards in addition to the procedures laid out in the VCCI regulations.

Standard	Description / Title
CISPR 22: Ed 5.2:2006	Information Technology Equipment – Radio disturbance characteristics - Limits and
	methods of measurement
CISPR 16-1-1 Ed2.1:2006	Specification for radio disturbance and immunity measuring apparatus and method –
	Part 1-1: Radio disturbance and immunity measuring apparatus – Measuring
	apparatus.
CISPR 16-1-2 Ed1.2:2006	Specification for radio disturbance and immunity measuring apparatus and methods –
	Part 1-2: Radio disturbance and immunity measuring apparatus – Measuring
	apparatus – Ancillary equipment – Conducted disturbances
CISPR 16-1-4 Ed2.0:2007	Specification for radio disturbance and immunity measuring apparatus and methods
	–Part 1-4: Radio disturbance and immunity measuring apparatus – Ancillary
	equipment – Radio disturbances
CISPR 16-2-3 Ed1.0:2003	Specification for radio disturbance and immunity measuring apparatus and methods –
	Part 2-3: Methods of measurement of disturbance and immunity – Radiated
	disturbance measurements
CISPR 16-4-2 Ed1.0:2003	Specification for radio disturbance and immunity measuring apparatus and methods –
	Part 4-2: Uncertainties, statistics and limit modeling – Uncertainty in EMC
	measurements
ANSI C63.4:2003	American National Standard for Method of Measurement of Radio Noise Emissions
	from Low Voltage Electrical and Electronic Equipment in the Range 9kHz to 40
	GHz.

EN 55022:2006 including amendment A1:2007

EN 55022:2006 references various international and European standards to be used when making the required measurements. The references all cite dated versions of the standards, therefore the editions cited are used.

International and	Description	Standard Used
EN equivalent		
standard		
CISPR 16-1-1 2003	Specification for radio disturbance and immunity measuring	CISPR 16-1-1 2003
EN 55016-1-1 2004	apparatus and methods Part 1-1: Radio disturbance and immunity	
	measuring apparatus - Measuring apparatus	
CISPR 16-1-2 2003	Specification for radio disturbance and immunity measuring	CISPR 16-1-2 2003
+ A1 2004	apparatus and methods Part 1-2: Radio disturbance and immunity	+ A1 2004
EN 55016-1-2 2004	measuring apparatus - Ancillary equipment - Conducted	
+ A1 2005	disturbances	
CISPR 16-1-4:2003	Specification for radio disturbance and immunity measuring	CISPR 16-1-4:2003
+ A1 2004	apparatus and methods Part 1-4: Radio disturbance and immunity	+ A1 2004
EN 55016-1-4: 2004	measuring apparatus - Ancillary equipment - Radiated	
+ A1: 2005	disturbances	
CISPR 16-4-2 2003	Specification for radio disturbance and immunity measuring	CISPR 16-4-2 2003
EN 55016-4-2 2004	apparatus and methods Part 4-2: Uncertainties, statistics and limit	
	modelling - Uncertainty in EMC measurements	

Unless the international publication has been modified by common modifications, indicated by (*mod*), either the intentional or the EN standard may be used. Where the EN standard differs from the intentional standard then the EN version is used. For all of the standards listed above there are no common modifications therefore Elliott makes use of the international version of all standards listed.

EN 55024:1998 including amendments A1:2001 and A2:2003

EN 55024 references various European standards to be used when making the required measurements. When the referenced standard is cited by version (date or revision) then that version is used except where noted. In instances where the standards are referenced without citing the version to be used, the current versions (or its international equivalent) are used.

Referenced standard	Description	Standard Used
IEC 61000-4-2 1995	Electromagnetic compatibility (EMC) Part 4: Testing and	IEC 61000-4-2:2008
EN 61000-4-2 1995	measurement techniques -" Section 2: Electrostatic discharge	EN 61000-4-2:2009
	immunity test	
IEC 61000-4-3 1995	Section 3: Radiated, radio-frequency, electromagnetic field	IEC 61000-4-3:2006
(mod)	immunity test	A1:2007
EN 61000-4-3 1996		A2:2010
		EN 61000-4-3:2006
		A1:2008
		A2:2010
IEC 61000-4-4 1995	Section 4: Electrical fast transient/burst immunity test	IEC 61000-4-4:2004
EN 61000-4-4 1995		A1:2010
		EN 61000-4-4:2004
		A1:2010
IEC 61000-4-5 1995	Section 5: Surge immunity test	IEC 61000-4-5:2005
EN 61000-4-5 1995		EN 61000-4-5:2006
IEC 61000-4-6 1996	Section 6: Immunity to conducted disturbances, induced by	IEC 61000-4-6:2008
EN 61000-4-6 1996	radio-frequency fields	EN 61000-4-6:2009
IEC 61000-4-8 1993	Section 8: Power frequency magnetic field immunity test	IEC 61000-4-8 1993
EN 61000-4-8 1993		A1:2000
		EN 61000-4-8:1993
		A1:2001
IEC 61000-4-11:1994	Section 11: Voltage dips, short interruptions and voltage	IEC 61000-4-11:2004
EN 61000-4-11:1994	variations immunity tests	EN 61000-4-11:2004

Although all of the references to the standards are dated references, all of the basic EN 61000-4-x standards referenced by EN .55024 have been superseded by more recent versions. As the date of withdrawal has passed for the older versions of standards, the EN / IEC versions of these basic standards as detailed in the third column are used.

CISPR 24:1997 including amendments A1:2001 and A2:2002

CISPR 24 references various IEC basic standards to be used when making the required measurements. When the referenced standard is cited by version (date or revision) then that version is used except where noted. In instances where the standards are referenced without citing the version to be used, the current versions are used.

Referenced standard	Description	Standard Used
IEC 61000-4-2 1995	Electromagnetic compatibility (EMC) Part 4: Testing and measurement techniques -" Section 2: Electrostatic discharge immunity test	IEC 61000-4-2:2008
IEC 61000-4-3 1995	Section 3: Radiated, radio-frequency, electromagnetic field immunity test	IEC 61000-4-3:2006 A1:2007 A2: 2010
IEC 61000-4-4 1995	Section 4: Electrical fast transient/burst immunity test	IEC 61000-4-4:2004 A1:2010
IEC 61000-4-5 1995	Section 5: Surge immunity test	IEC 61000-4-5:2005
IEC 61000-4-6 1996	Section 6: Immunity to conducted disturbances, induced by radio-frequency fields	IEC 61000-4-6:2008
IEC 61000-4-8 1993	Section 8: Power frequency magnetic field immunity test	IEC 61000-4-8 1993 A1:2000
IEC 61000-4-11 1994	Section 11: Voltage dips, short interruptions and voltage variations immunity tests	IEC 61000-4- 11:2004

Although all of the references to the standards are dated references, all of the basic IEC 61000-4-x standards referenced by CISPR 24 have been superseded by more recent versions. As the date of withdrawal has passed for the older versions of standards, the versions of these basic standards as detailed in the third column are used.

End of Report

This page is intentionally blank and marks the last page of this test report.