

Test Certificate

A sample of the following product received on August 26, 2011 and tested on August 26, 29, & 30, September 1 & 2, and October 17, 2011 complied with the requirements of,

- Subpart B of Part 15 of FCC Rules for Class A digital devices
- Industry Canada Interference Causing Equipment Standard ICES 003, dated February 2004 (Class A)
- VCCI Regulations For Voluntary Control Measures of radio interference generated by Information Technology Equipment, dated April 2011 (Class A).
- EN 55022:2006 including amendment A1:2007, "Information technology equipment Radio disturbance characteristics – Limits and methods of measurement" (Class A)
- CISPR 22:2008 "Information technology equipment Radio disturbance characteristics Limits and methods of measurement" (Class A)
- AS/NZS CISPR 22:2006 "Information technology equipment Radio disturbance characteristics – Limits and methods of measurement" (Class A)
- EN 55024:1998 including amendments A1:2001 and A2:2003 "Information technology equipment – Immunity characteristics, Limits and method of measurement."
- CISPR 24:1997 including amendments A1:2001 and A2:2002 "Information technology equipment – Immunity characteristics, Limits and method of measurement."

given the measurement uncertainties detailed in Elliott report R85225.

Ubiquiti Networks Model AirCam Dome

11 Bare

David W. Bare Chief Engineer

Ubiquiti Networks

Printed Name

Testing Cert #2016.01

Elliott Laboratories is accredited by the A2LA, certificate number 2016.01, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

Elliott Laboratories www.elliottlabs.com 41039 Boyce Road Fremont, CA. 94538 510-578-3500 Phone 510-440-9525 Fax

EMC Test Report

Class A Information Technology Equipment Class A Digital Device

FCC Part 15; Industry Canada ICES 003 VCCI Regulations 2011 EN 55022:2006 + A1:2007; CISPR 22:2008 AS/NZS CISPR 22:2006 EN 55024:1998 +A1:2001 +A2:2003 CISPR 24:1997 + A1:2001 + A2:2002

Model: AirCam Dome

COMPANY:	Ubiquiti Networks 91 E. Tasman Drive San Jose, CA 95134
TEST SITE(S):	Elliott Laboratories 41039 Boyce Road Fremont, CA. 94538-2435
REPORT DATE:	November 10, 2011
FINAL TEST DATES:	August 26, 29, & 30, September 1 & 2, and October 17, 2011
NUMBER OF PAGES:	79

TOTAL NUMBER OF PAGES:

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

Chandra Morris **Quality Assurance Representative**

David W. Bare **Chief Engineer**

PROGRAM MGR /

HNICAL REVIEWER:

Elliott Laboratories is accredited by the A2LA, certificate number 2016.01, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

File: R85225

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	11-10-2011	First release	

TABLE OF CONTENTS

REVISION HISTORY	3
TABLE OF CONTENTS	4
SCOPE	6
OBJECTIVE	6
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
INFORMATION TECHNOLOGY EQUIPMENT EMISSIONS TEST RESULTS	
CONDUCTED EMISSIONS (MAINS PORT)	
CONDUCTED EMISSIONS (TELECOMMUNICATIONS PORTS)	8
RADIATED EMISSIONS	8
INFORMATION TECHNOLOGY EQUIPMENT IMMUNITY TEST RESULTS	9
MEASUREMENT UNCERTAINTIES	10
EQUIPMENT UNDER TEST (EUT) DETAILS	11
GENERAL	
OTHER EUT DETAILS	
ENCLOSURE	
MODIFICATIONS SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
EMISSIONS TESTING	
RADIATED AND CONDUCTED EMISSIONS	
RADIATED EMISSIONS CONSIDERATIONS	
CONDUCTED EMISSIONS CONSIDERATIONS	13
EMISSIONS MEASUREMENT INSTRUMENTATION	14
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
IMPEDANCE STABILIZATION NETWORK (ISN) FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNAS	
INSTRUMENT CALIBRATION	
EMISSIONS TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS (MAINS)	16
RADIATED EMISSIONS (SEMI-ANECHOIC AND/OR OATS TEST ENVIRONMENT)	17
Preliminary Scan	
Final Maximization.	
RADIATED EMISSIONS (FREE-SPACE TEST ENVIRONMENT)	
Preliminary Scan Final Maximization	
SAMPLE CALCULATIONS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
IMMUNITY TESTING	
GENERAL INFORMATION	

IMMUNITY MEASUREMENT INSTRUMENTATION	20
ELECTROSTATIC DISCHARGE TEST SYSTEM	
ELECTROMAGNETIC FIELD TEST SYSTEM	
ELECTRICAL FAST TRANSIENT/BURST TEST SYSTEM	20
SURGE TEST SYSTEM	20
CONDUCTED INTERFERENCE TEST SYSTEM	
VOLTAGE VARIATION TEST SYSTEM	
INSTRUMENT CALIBRATION	21
IMMUNITY TEST PROCEDURES	
EQUIPMENT PLACEMENT	
APPLICATION OF ELECTROSTATIC DISCHARGES	
APPLICATION OF ELECTROMAGNETIC FIELD	
APPLICATION OF ELECTRICAL FAST TRANSIENTS	
APPLICATION OF SURGES	
APPLICATION OF CONDUCTED INTERFERENCE	
APPLICATION OF VOLTAGE VARIATIONS	22
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	23
APPENDIX B TEST DATA	25
APPENDIX C PRODUCT LABELING REQUIREMENTS	71
APPENDIX D USER MANUAL REGULATORY STATEMENTS	72
APPENDIX E ADDITIONAL INFORMATION FOR VCCI	73
APPENDIX F ADDITIONAL INFORMATION FOR AUSTRALIA AND NEW ZEALAND	74
APPENDIX G BASIC AND REFERENCE STANDARDS	75
SUBPART B OF PART 15 OF FCC RULES FOR DIGITAL DEVICES.	
VCCI REGULATIONS FOR INFORMATION TECHNOLOGY EQUIPMENT, DATED APRIL 2009	
EN 55022:2006 INCLUDING AMENDMENT A1:2007	
EN 55024:1998 INCLUDING AMENDMENTS A1:2001 AND A2:2003	
CISPR 24:1997 INCLUDING AMENDMENTS A1:2001 AND A2:2002	78
END OF REPORT	79

SCOPE

Governments and standards organizations around the world have published requirements regarding the electromagnetic compatibility (EMC) of electronic equipment. Testing has been performed on the Ubiquiti Networks model AirCam Dome, pursuant to the following standards.

Standard	Title	Standard Date
FCC Part 15, Subpart B	Radio Frequency Devices	October 2011 as
		Amended
ICES-003, Issue 4	Digital apparatus	2004
VCCI V-3	VCCI Regulations For Voluntary Control Measures of	April 2011
	radio interference generated by Information	
	Technology Equipment	
CISPR 22	Information technology equipment – Radio disturbance	2008
	characteristics – Limits and methods of measurement	
AS/NZS CISPR 22	Information technology equipment – Radio disturbance	2006
	characteristics – Limits and methods of measurement	
EN 55022	Information technology equipment – Radio disturbance	2006 + A1:2007
	characteristics – Limits and methods of measurement	
EN 55024	Information technology equipment – Immunity	1998
	characteristics, Limits and method of measurement	+A1:2001
		+A2:2003
CISPR 24	Information technology equipment – Immunity	1997 +A1:2001
	characteristics, Limits and method of measurement	+A2:2002

All measurements and evaluations have been in accordance with these specifications, test procedures, and measurement guidelines as outlined in Elliott Laboratories test procedures, and in accordance with the standards referenced therein (refer to Appendix G).

OBJECTIVE

The objective of Ubiquiti Networks is to:

- declare conformity with the essential requirements of the EMC directive 2004/108/EC using the harmonized standard(s) referenced in this report;
- declare conformity with the electromagnetic compatibility (EMC) regulatory arrangement of the Australian Communications and Media Authority (ACMA);
- verify compliance with FCC requirements for digital devices and Canada's requirements for digital devices;
- verify compliance to the Japanese VCCI requirements for Information Technology Equipment;

STATEMENT OF COMPLIANCE

The tested sample of Ubiquiti Networks model AirCam Dome complied with the requirements of:

Standard/Regulation	Equipment Type/Class	Standard Date
Subpart B of Part 15 of the FCC Rules (CFR title 47)	Class A	2011 as amended
ICES-003, Issue 4	Class A	2004
VCCI Regulations V-3	Class A	2011
EN 55022	Class A	2006 + A1:2007
CISPR 22 Edition 6	Class A	2008
AS/NZS CISPR 22	Class A	2006
EN55024	-	1998 +A1:2001 +A2:2003
CISPR 24	-	1997 +A1:2001 +A2:2002

This report is suitable for demonstrating compliance with the EMC requirements in Australia and New Zealand. Refer to Appendix F for more details.

The test results recorded herein are based on a single type test of the Ubiquiti Networks model AirCam Dome and therefore apply only to the tested sample(s). The sample was selected and prepared by Jennifer Sanchez of Ubiquiti Networks.

Maintenance of compliance is the responsibility of the company. Any modification of the product that could result in increased emissions or susceptibility should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different enclosure, different line filter or power supply, harnessing and/or interface cable changes, etc.).

DEVIATIONS FROM THE STANDARDS

The following deviations were made from the published requirements listed in the scope of this report:

Conducted emissions on telecommunication ports tests were not performed per the standard.

INFORMATION TECHNOLOGY EQUIPMENT EMISSIONS TEST RESULTS

The following emissions tests were performed on the Ubiquiti Networks model AirCam Dome. The measurements were extracted from the data recorded during testing and represent the highest amplitude emissions relative to the specification limits. The complete test data is provided in the appendices of this report. Although the product is not intended for residential use, some of the tests were performed using the limits for residential use (Class B) which are more stringent than those for commercial use (Class A).

CONDUCTED EMISSIONS (MAINS PORT)

Frequency Range Operating Voltage	Standard/Section	Requirement	Measurement	Margin	Status
0.15-30 MHz, 120V, 60Hz	FCC § 15.107(a)	0.15-0.5 MHz: 66-56 dBµV QP	44.1dBµV @ 16.229MHz	-5.9dB	Complied
0.15-30 MHz, 220V, 60Hz	VCCI Table 4.2 CISPR 22 Table 2 EN 55022 Table 2	56-46 dBµV Av 0.5-5.0 MHz:	45.7dBµV @ 16.229MHz	-4.3dB	Complied
0.15-30 MHz, 230V, 50Hz	AS/NZS CISPR 22 Table 2 (Class B)	56 dBµV QP 46 dBµV Av 5.0-30.0 MHz: 60 dBµV QP 50 dBµV Av	42.1dBµV @ 0.356MHz	-6.7dB	Complied

CONDUCTED EMISSIONS (TELECOMMUNICATIONS PORTS)

Testing was not performed

RADIATED EMISSIONS

Frequency Range	Standard/Section	Requirement	Measurement	Margin	Status
30-1000 MHz	EN 55022 Table 5 CISPR 22 Table 5 FCC §15.109(g) VCCI Table 4.5 AS/NZS CISPR 22 Table 5 Class A	30 – 230, 40 dBµV/m 230 – 1000, 47 dBµV/m (10m limit)	44.3dBµV/m @ 800.00MHz	-2.7dB	Complied
1000-2000 MHz Note 1	FCC §15.109(a) Class B	54.0 dBμV/m Av 74.0 dBμV/m Pk (3m limit)	47.7dBµV/m @ 1350.1MHz	-6.3dB	Complied
1000-2000 M Hz Note 1	EN 55022 Table 7 CISPR 22 Table 7 VCCI Table 4.7 (Free-Space Measurement) Class A	1 – 3GHz 56 dBµV/m Av 76 dBµV/m Pk 3 – 6GHz 60 dBµV/m Av 80 dBµV/m Pk (3m limit)	43.3dBµV/m @ 1055.6MHz	-6.7dB	Complied
Note 1As the highest frequency generated in the EUT was declared to be between 108 MHz and 500 MHz, the upper frequency for radiated measurements was 2 GHz.Note 2As the highest frequency of the internal sources of the EUT was declared to be between 108 MHz and 500 MHz, the upper frequency for radiated measurements was 2 GHz.					

INFORMATION TECHNOLOGY EQUIPMENT IMMUNITY TEST RESULTS

The following tests were performed on the Ubiquiti Networks model AirCam Dome. The results are based upon performance criteria defined by the company and as detailed in this test report.

Test	Basic Standard	Level Tested	Criterion Required	Criterion Met	Status
ESD	EN 61000-4-2 IEC 61000-4-2	4 kV CD 8 kV AD	В	А	Complied
RF EM Field AM 80% AM 1kHz	EN 61000-4-3 IEC 61000-4-3	80-1000 MHz 3 V/m	А	А	Complied
EFT, AC Power Port	EN 61000-4-4	±1 kV	В	А	Complied
EFT, DC Power Port	IEC 61000-4-4		N/A – Note		
EFT, Signal Ports			N/A – Note 2	2	1
Surge, AC Power Port	EN 61000-4-5	1 kV DM, 2 kV CM 1.2/50 µs	В	А	Complied
Surge, DC Power Port	IEC 61000-4-5		N/A - Note	1	
Surge, Signal Ports			N/A – Note 2	2	
RF, conducted continuous, Signal Ports			N/A – Note 2	2	
RF, conducted continuous, AC Power Port	EN 61000-4-6 IEC 61000-4-6	0.15-80 MHz, 3 Vrms 80% AM 1kHz	A	A	Complied
RF, conducted continuous, DC Power Port		N/A – Note 1			
Power Frequency Magnetic Field	EN 61000-4-8 IEC 61000-4-8		N/A – Note	3	
Voltage Dips and Interrupts (60Hz)	EN 61000-4-11 IEC 61000-4-11	>95%, 0.5 cycles 30%, 30 cycles >95%, 300 cycles	B C C	A A C	Complied Note 4
3m. Note 3 Ubiquiti Networks st magnetic fields. Note 4 The 30%/30-period and interruption of th AC voltage of 230V/ cycles at a 60Hz fre	ated that the EUT's ated that the EUT d and 95%/300-period he same time durati /50Hz specified in E quency for this test	ports. interface ports are not loes not contain any co d dips at an AC supply on as the 30%/25-peri N 55024. Although the is a technical deviatior id, therefore, it is consi	omponents su frequency of od and 95%- e use duratio of from the EN	usceptible to f 60Hz resu 250-period ns of 30 an I 55024 sta	o 50Hz It in a dip dips at an d 300 ndard it

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below were calculated using the approach described in CISPR 16-4-2:2003 using a coverage factor of k=2, which gives a level of confidence of approximately 95%. The levels were found to be below levels of *U*cispr and therefore no adjustment of the data for measurement uncertainty is required.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
Conducted Emissions	dBuV or dBuA	150kHz – 30MHz	± 2.2 dB
Radiated Electric Field	dBuV/m	30 – 1000 MHz	± 3.6 dB
Radiated Electric Field	dBuv/III	1000 – 40,000 MHz	± 6.0 dB
Radiated Immunity	V/m	80 – 2700 MHz	- 26.3%, + 29.97%
ESD	KV	N/A	± 8.6%
Fast Transients	Voltage	N/A	± 5.98 %
	Timing	N/A	± 8.60 %
Surge	Voltage	N/A	± 4.92 %
RF Common Mode (CDN method)	Vrms	N/A	-12.64 %, +13.33 %
RF Common Mode (BCI method)	Vrms	N/A	-13.45 %, +15.32 %
Voltage Dips	Voltage	N/A	± 2.32 %
Voltage Dips	Timing	N/A	± 0.08mS

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Ubiquiti Networks model AirCam Dome is a Security camera that is designed to stream live video. Since the EUT could be placed in multiple locations, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the AirCam is 24 Vdc and 1 Amp. The electrical rating of the POE Adapter is 100-240V, 50-60Hz and 0.5A.

The sample was received on August 26, 2011 and tested on August 26, 29, & 30, September 1 & 2, and October 17, 2011. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Ubiquiti Networks	AirCam Dome	Security Camera	Prototype	N/A
Ubiquiti Networks	UBI-POE-24-5	Carrier POE Adapter	1102-0000090	N/A

OTHER EUT DETAILS

The following EUT details should be noted: EUT is a POE (Power Over Ethernet) device.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 9 cm wide by 9 cm deep by 10 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

No local support equipment was used during emissions testing.

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
HP	G42	PC Laptop	584037-001	-

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port		Cable(s)				
From To		Description	Shielded/Unshielded	Length(m)		
POE(EUT)	POE(EUT) POE Injector		Unshielded	0.5		
AC Power	AC Power AC Mains		Unshielded	1.0		
(POE Injector)						
LAN(POE Injector)	PC Laptop	CAT5	Unshielded	2.0		

EUT OPERATION

During emissions testing the EUT was streaming video.

During immunity testing the EUT was steaming live video. Normal operation is indicated by the EUT continuously streaming live video displayed on the PC Laptop and shall be monitored by the PC Laptop.

The performance criteria applied during immunity testing were:

Criterion A:

During and after testing the EUT shall continue to show the video stream on the PC Laptop.

Criterion B:

During application of the transient test, degradation of performance including loss of signal is allowed provided that the EUT self-recovers to normal operation after testing without any operator intervention.

Criterion C:

Loss of function is allowed provided that normal operation can be restored by operator intervention.

EMISSIONS TESTING

RADIATED AND CONDUCTED EMISSIONS

Final test measurements were taken at the Elliott Laboratories Anechoic Chambers listed below. The test sites contain separate areas for radiated and conducted emissions testing. The sites conform to the requirements of ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz and CISPR 16-1-4:2007 - Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances. They are registered with the VCCI and are on file with the FCC and Industry Canada.

Site	Reg	istration Num	Location	
Sile	VCCI	FCC	Canada	Location
Chamber 3	R-1683 G-58	769238	IC 2845B-3	41039 Boyce Road Fremont, CA 94538-2435
Chamber 5	C-1797	211948	IC 2845B-5	Flemont, CA 94538-2455

RADIATED EMISSIONS CONSIDERATIONS

Radiated emissions measurements were made with the EUT powered from a supply voltage within the expected tolerances of each nominal operating voltage/frequency for each geographical regions covered by the scope of the standards referenced in this report.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4 and CISPR 22.

Mains port measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

Telecommunication port measurements are made with the unshielded network cable connected through an impedance stabilization network (ISN) appropriate to the type of cable employed. Where no suitable ISN is available measurements are made using a capacitive voltage probe (CVP) and a current probe. If shielded cables are specified for the port under test the measurement is made of the noise voltage on the shield of the cable via a 100 ohm resistor.

EMISSIONS MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1:2006 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7 GHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000 MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

Measurements are converted to the field strength at an antenna or voltage developed at the LISN (or ISN) measurement port, which is then compared directly with the appropriate specification limit under software control of the test receivers and spectrum analyzers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted emission measurements utilize a fifty micro-Henry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250-uH CISPR adapter. This network provides for calibrated radio-frequency noise measurements by the design of the internal low-pass and high-pass filters on the EUT and measurement ports, respectively.

IMPEDANCE STABILIZATION NETWORK (ISN)

Telecommunication port conducted emission measurements utilize an Impedance Stabilization Network with a 150-ohm termination impedance and specific longitudinal conversion loss as the voltage monitoring point. This network provides for calibrated radio-frequency noise measurements by the design of the internal circuitry on the EUT and measurement ports, respectively. For current measurements, a current probe with a uniform frequency response and less than 1-ohm insertion impedance is used.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high-amplitude transient events.

ANTENNAS

A bilog antenna or combination of biconnical and log periodic antennas are used to cover the range from 30 MHz to 1000 MHz. Narrowband tuned dipole antennas may be used over the entire 30 to 1000 MHz frequency range for precision measurements of field strength. Above 1000 MHz, horn antennas are used. The antenna calibration factors are included in site factors that are programmed into the test receivers or data collection software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor drive to vary the antenna height.

ANSI C63.4, CISPR 22 and KN22 specify that the test height above ground for tablemounted devices shall be 80 centimeters. Floor-mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material up to 12-mm thick if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the company's specifications. An appendix of this report contains the list of test equipment used and calibration information.

EMISSIONS TEST PROCEDURES

EUT AND CABLE PLACEMENT

The standards require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, CISPR 22 and KN22, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS (MAINS)

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest-amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak-mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord. Emissions that have peak values close to the specification limit are also measured in the quasi-peak and average detection modes to determine compliance except when the amplitude of the emission when measured with the quasi-peak detector is more than 10 dB below the specification limit for average measurements. In this case only quasi-peak measurements are performed.

RADIATED EMISSIONS (SEMI-ANECHOIC and/or OATS TEST ENVIRONMENT)

Radiated emissions measurements in a semi-anechoic environment are performed in two phases (preliminary scan and final maximization). Final maximization may be performed on an OATS.

Preliminary Scan

A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulations specified on page 1. One or more of these are performed with the antenna polarized vertically and one or more of these are performed with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions if required. Other methods used during the preliminary scan for EUT emissions involve scanning with near-field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final Maximization

During final maximization, the highest-amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth that results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions that have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

For measurements above 1GHz every effort is made to ensure the EUT remains within the cone of radiation of the measurement antenna (i.e. 3dB beam-width of the antenna). This may include rotating the product and/or angling the measurement antenna.

RADIATED EMISSIONS (FREE-SPACE TEST ENVIRONMENT)

Anechoic material is placed on the floor between the EUT and the measurement antenna and behind the EUT to ensure that the test site complies with the requirements of CISPR 16 for measurements of radiated field strength above 1GHz in a free-space environment.

The measurements are made in two phases (preliminary scan and final maximization).

Preliminary Scan

A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in one or more given modes of operation. Scans are performed from 1 GHz up to the frequency required with the antenna polarized vertically and repeated with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360° with the measurement antenna set at a height equal to the center height of the EUT. If necessary additional scans are performed with the antenna height adjusted up and down to ensure the measurement antenna illuminates the entire height of the EUT. A peak detector is used for the preliminary scan and results compared to the average limit.

Final Maximization

During final maximization, the highest-amplitude emissions identified in the preliminary scan are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. For small EUT fitting within the beam-width of the measurement antenna, the azimuth resulting in the highest emission is the maintained, and the measurement antenna is positioned at a fixed height for final measurements.

For large EUT not fitting within the beam-width of the measurement antenna, the azimuth that results in the highest emission is then maintained while varying the antenna height from one meter up to the height of the top of the EUT (when necessary). A second rotation of the EUT at the new height may be performed to ensure the highest field strength is obtained.

Peak and average measurements are made of the signal with the level maximized for EUT azimuth and, where necessary, antenna height. Each recorded level is corrected by test software using appropriate factors for cables, connectors, antennas, and preamplifier gain.

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

IMMUNITY TESTING

GENERAL INFORMATION

Final tests were performed at the Elliott Laboratories Test Sites located at41039 Boyce Road, Fremont, CA 94538-2435. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent CENELEC and IEC standards.

All immunity tests were performed with the host system operating from an AC source voltage within the operating ranges specified for the product, meeting the requirement detailed in EN 55024 / CISPR 24 section 6.1 and, where appropriate, KN24.

IMMUNITY MEASUREMENT INSTRUMENTATION

ELECTROSTATIC DISCHARGE TEST SYSTEM

An ESD generator is used for all testing. It is capable of applying electrostatic discharges in both contact discharge mode to 8 kV and air discharge mode to 16.5 kV in both positive and negative polarities in accordance with the IEC/EN/KN 61000-4-2 basic EMC publication.

ELECTROMAGNETIC FIELD TEST SYSTEM

A signal generator and power amplifiers are used to provide a signal at the appropriate power and frequency to an antenna to obtain the required electromagnetic field at the position of the EUT in accordance with the IEC/EN/KN 61000-4-3 basic EMC publication.

ELECTRICAL FAST TRANSIENT/BURST TEST SYSTEM

An electrical fast transient/burst generator is used for all testing. It is capable of applying the required fast transient immunity test levels to the mains at any phase angle with respect to the mains voltage waveform and to attached cables via a capacitive coupling clamp in accordance with the IEC/EN/KN 61000-4-4 basic EMC publication.

SURGE TEST SYSTEM

A surge generator is used for all testing. It is capable of providing the required surge immunity test levels to the mains port at any phase angle with respect to the mains line voltage waveform or to the signal port in accordance with the IEC/EN/KN 61000-4-5 basic EMC publication.

For I/O line surges a surge coupling network is used to couple the output from the generator to the I/O lines. The generator can generate the CWG $(1.2/50\mu S)$ and CCITT $(70/100\mu S)$ waveforms as required by the IEC/EN/KN 61000-4-5 basic standard.

CONDUCTED INTERFERENCE TEST SYSTEM

A signal generator and power amplifier are used to provide a signal at the appropriate power and frequency through a coupling network to obtain the required electromagnetic signal on the power cord and attached cables of the EUT in accordance with the IEC/EN/KN 61000-4-6 basic immunity standard.

VOLTAGE VARIATION TEST SYSTEM

A power-line disturbance simulator and variable transformer are used for all testing. These two units are, when used together, capable of simulating mains voltage variations between 0 and 100% for periods up to 100 seconds in duration in accordance with the IEC/EN/KN 61000-4-11 basic EMC standard.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the company's specifications. An appendix of this report contains the list of test equipment used and calibration information.

IMMUNITY TEST PROCEDURES

EQUIPMENT PLACEMENT

The basic standards for evaluating immunity to electrostatic discharges specify that a tabletop EUT shall be placed on a non-conducting table 80 centimeters above a ground reference plane and that floor-mounted equipment shall be placed on an insulating support approximately 10 centimeters above a ground plane. During the tests, the EUT is positioned over a ground reference plane in conformance with this requirement. For tabletop equipment, a 1.6 by 0.8 meter metal sheet is placed on the table and connected to the ground plane via a metal strap with two 470-kOhm resistors in series. The EUT and attached cables are isolated from this metal sheet by 0.5-millimeter thick insulating material.

The basic standards for evaluating immunity to radiated electric fields specify that a tabletop EUT be placed on a non-conducting table 80 centimeters high and that floor-mounted equipment may be mounted on non-conductive supports 0.05 to 0.15m high. During the IEC 61000-4-3 tests, the EUT is positioned in a shielded anechoic test chamber to reduce reflections from the internal surfaces of the chamber.

The basic standards for evaluating immunity electrically fast transient bursts specify that the EUT and attached cables be placed on an insulating support 10 centimeters above a ground reference plane. During the tests, the EUT was positioned on a table with a ground reference plane or on the floor in conformance with this requirement.

The basic standards for evaluating immunity to surge transients do not specify positioning of the EUT. The EUT was therefore placed on a table or on the floor.

The basic standards for evaluating immunity to conducted rf disturbances specify that the EUT be placed on an insulating support 10 centimeters above a ground reference plane and that the attached cables be maintained between 30 and 50 millimeters above this plane where possible. During the tests, the EUT was positioned on a table with a ground reference plane or on the floor in conformance with this requirement.

The basic standards for evaluating immunity to voltage dips and interruptions do not specify positioning of the EUT. The EUT was therefore placed on a table or on the floor.

APPLICATION OF ELECTROSTATIC DISCHARGES

The points of application of the test discharges directly to the EUT are determined after consideration of the parts of the EUT that are accessible to the operator during normal operation. Contact and air discharges are applied to the EUT, contact discharges to conducting surfaces and air-gap discharges to insulating surfaces. Contact discharges are also applied to the coupling planes to simulate nearby ESD events.

APPLICATION OF ELECTROMAGNETIC FIELD

The electromagnetic field is established at the front edge of the EUT.

The frequency range is swept through the frequency range of the test using a power level necessary to obtain the required field strength at the EUT. The field is amplitude modulated using a 1-kHz sine wave to a depth of 80% for the swept frequency test in accordance with the applicable basic standard(s).

The test is repeated with each of the four sides of the EUT facing the field-generating antenna. For small, portable products the test is also performed with the top and bottom sides of the EUT facing the antenna.

APPLICATION OF ELECTRICAL FAST TRANSIENTS

The application of the test voltage to the EUT is made to the cable connected to the power port under test via discrete capacitors and through a capacitive coupling clamp in the case of cables connected to signal ports.

APPLICATION OF SURGES

The application of the surge to the EUT's AC or DC power port is made to the power cable attached to the unit via the coupling/decoupling network within the surge generator.

For coupling to unshielded signal lines a coupling network is used to give the correct coupling path (resistor and capacitor/spark gap) to the line under test. Coupling to shielded signal lines is made directly to the shield at the far end of the cable, with the cable length set to the shorter of 20m or the maximum specified cable length. Whenever possible a decoupling network is placed in series with the I/O line under test and the support equipment to ensure that any susceptibility observed is due to the EUT and not the support equipment. Decoupling networks are not available for high-speed signal lines.

APPLICATION OF CONDUCTED INTERFERENCE

The application of the test voltage to the EUT is made through either a coupling decoupling network (CDN), by direct injection, or through an inductive coupling clamp as appropriate to the cable being tested. The frequency range is swept from 0.15 to 80 MHz using a power level necessary to obtain the specified interference voltage.

APPLICATION OF VOLTAGE VARIATIONS

The applications of the variations in mains voltage to the EUT are made through the AC power cable attached to the unit.

Dedicted Enviroisme				
Manufacturer	1,000 - 2,000 MHz, 26-Aug-11 Description	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/8/2011
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/2/2012
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	8/15/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	4/13/2012
Sunol Sciences Unholtz Dickie	Biconilog, 30-3000 MHz CONSOLE	JB3 SA80	2237 2280	7/14/2012 N/A
	s - AC Power Ports, 29-Aug-11			
<u>Manufacturer</u> EMCO	<u>Description</u> LISN, 10 kHz-100 MHz	<u>Model</u> 3825/2	<u>Asset #</u> 1293	<u>Cal Due</u> 3/1/2012
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	1594	5/17/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	4/6/2012
Radiated Emissions, 3 Manufacturer	30 - 1,000 MHz, 18-Oct-11 Description	Model	Asset #	<u>Cal Due</u>
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	<u>Assel #</u> 1630	4/13/2012
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	2237	7/14/2012
Com-Power Corp.	Preamplifier, 30-1000 MHz	PAM-103	2380	4/13/2012
Radiated Immunity, 8	0 - 1,000 MHz, 31-Aug-11			
<u>Manufacturer</u>	Description	Model	Asset #	<u>Cal Due</u>
Werlatone	Directional Coupler, 0.1-1000 MHz, 40dB, 500w	C6021	1533	N/A
EMCO	Antenna, Horn, 1-18 GHz (SA40-Purple)	3115	1779	3/31/2012
Rohde & Schwarz	Power Meter, Dual Channel, DC to 40 GHz, 100 pW to 30 W, 9 kHz to 3 GHz, 200µV to 1000V	NRVD	1787	12/23/2011
Amplifier Research	Amplifier, 250W, 80-1000 MHz	250A1000	1809	N/A
Rohde & Schwarz	Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms	NRV-Z51	2152	11/6/2011
Agilent	PSG, Performance Signal Generator, (installed options, HEH, HEC, 602, 420)	E8267C	2200	5/11/2012
VDI, 31-Aug-11				
Manufacturer	Description	Model	Asset #	<u>Cal Due</u>
Fluke Mfg. Inc.	Fluke True RMS Multimeter	111	1557	3/15/2012
EM Test AG	VDI Generator	UCS 500 M6	1585	N/A
	(IEC/EN 61000-4-6), 01-Sep-11			
Manufacturer	Description Decoupling Network, 15 - 230	Model	<u>Asset #</u>	Cal Due
Fischer Custom Comm.	MHz	F-203I-DCN	605	N/A
Instruments For Industry	Amplifier, Wideband, 0.01- 230MHz	M75	1295	7/1/2012
Rohde & Schwarz	Signal Generator, 9 kHz-2.080 GHz	SMY02	1302	10/21/2011
Rohde & Schwarz	Power Meter, Single Channel, +1795+1796	NRVS	1534	5/17/2012

Appendix A Test Equipment Calibration Data

Test Report Report Date: November 10, 2011

		Report D	ate: Noveml	ber 10, 2011
Fischer Custom Comm.	EM Clamp 10 KHz - 1 GHz	F-203I-32MM	1566	10/4/2012
Fischer Custom Comm.	Calibration Fixture - EM Clamp	F-203I-CF	1568	5/21/2012
Fischer Custom Comm.	M3 Network, 150 kHz-230 MHz	FCC-801-M3-25A	1579	5/13/2012
Bird Electronics Corp. Rohde & Schwarz	6 dB, 100 W Attenuator Attenuator, 20 dB, 10W, DC-18	100-A-FFN-06 20dB, 10W, Type N	1596 1795	6/27/2012 5/25/2012
	GHz		1100	0/20/2012
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1796	5/25/2012
EFT, 01-Sep-11				
Manufacturer	Description	Model	Asset #	Cal Due
Fischer Custom Comm.	Decoupling Network,.15 - 230 MHz	F-203I-DCN	605	N/A
EM Test AG	EFT Generator	UCS 500 M6	1585	N/A
ESD, 01-Sep-11				
<u>Manufacturer</u>	Description	Model	Asset #	Cal Due
Fischer Custom Comm.	Decoupling Network,.15 - 230 MHz	F-203I-DCN	605	N/A
Elliott Laboratories	ESD, Vertical Plane, 19-3/4 x 19- 3/4	ESD, VP, 19-3/4 x 19-3/4	610	N/A
Surge, 02-Sep-11				
Manufacturer	Description	Model	Asset #	Cal Due
KeyTek	ECAT - Short Stack, EClass Series 100	ECAT Control Center	1789	5/10/2012

Appendix B Test Data

T84420 Pages 26 - 70

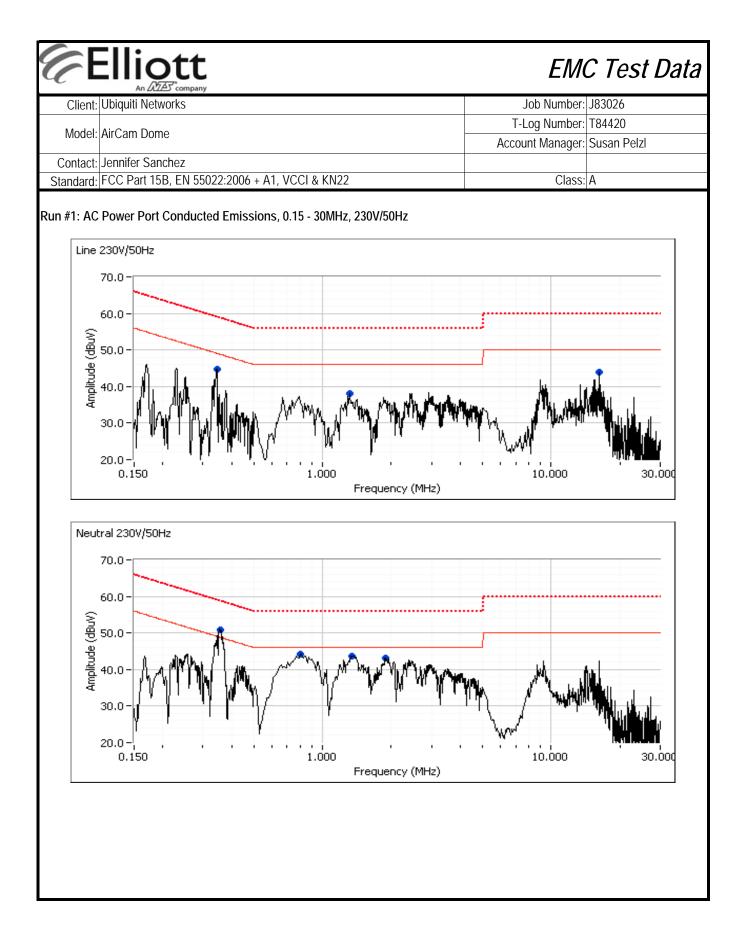
6EI	liott
	An 187AT company

EMC Test Data

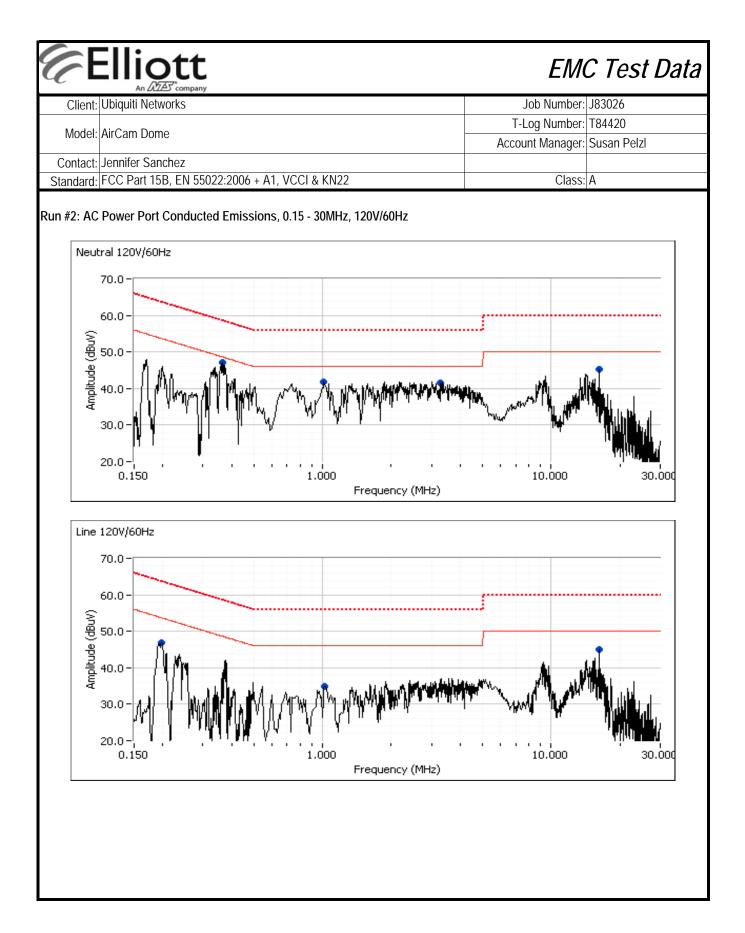
An DLIZ	o company		
Client:	Ubiquiti Networks	Job Number:	J83026
Model:	AirCam Dome	T-Log Number:	T84420
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Emissions Standard(s):	FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22	Class:	А
Immunity Standard(s):	EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment:	-

EMC Test Data

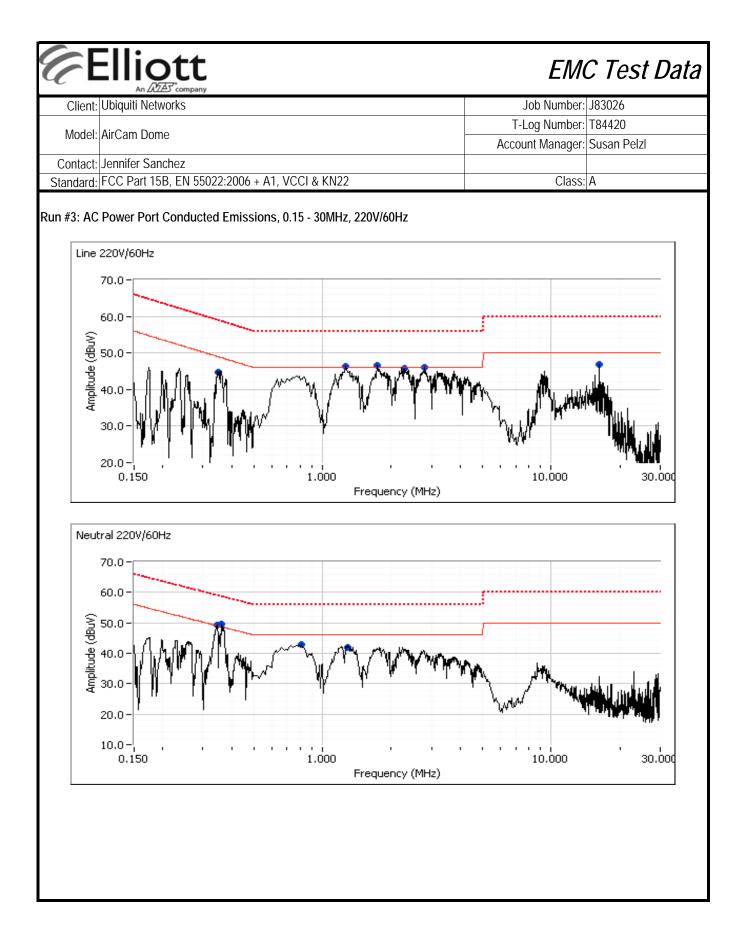
For The


Ubiquiti Networks

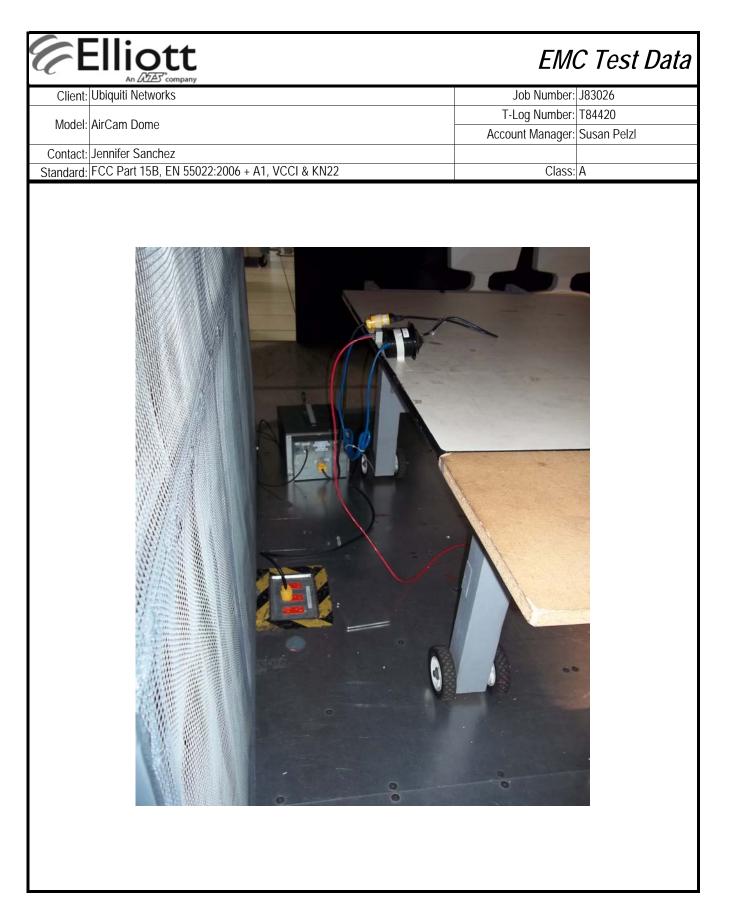
Model


AirCam Dome

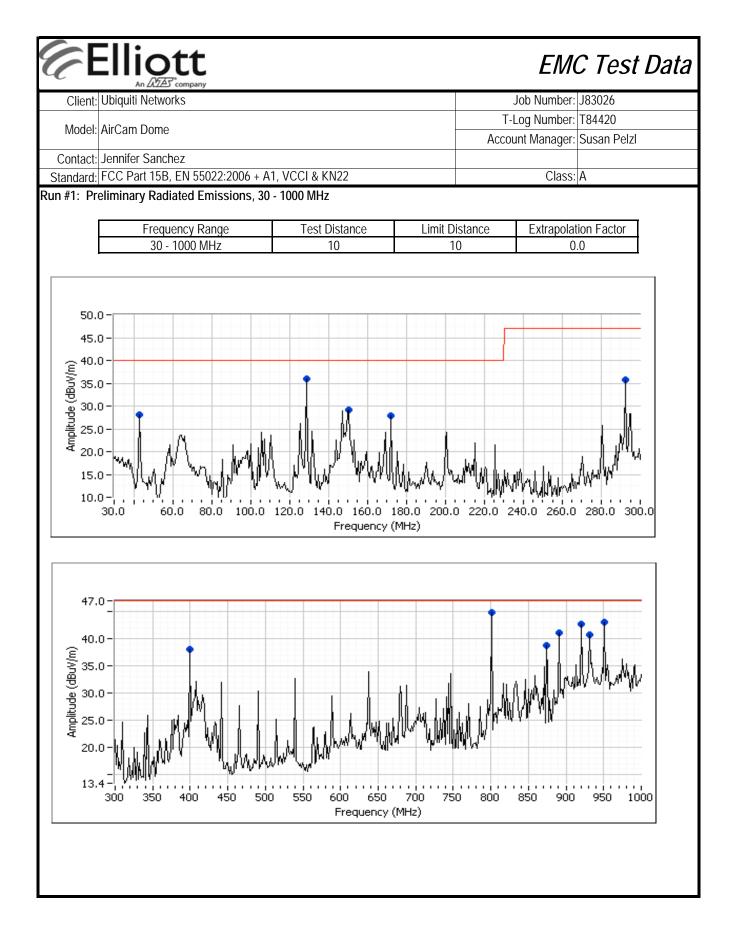
Date of Last Test: 10/18/2011


works			Job Number:	J83026
ne		T	-Log Number:	T84420
	Acco	ount Manager:	Susan Pelzl	
nchez				
5B, EN 55022:2006 + A1, VCCI & KN22			Class:	A
		-	ber)	
Is The objective of this test session is to per specification listed above.	form final qualificat	tion testing of t	he EUT with r	respect to the
8/29/2011	Config. Use	ed: 1		
Hong Stenerson	Config Chang	ge: None		
Fremont Chamber #5	EUT Voltaç	ge: Refer to inc	dividual run	
ouration				
the EUT was located on a wooden table in . A second LISN was used for all local suber. Any cables running to remote suppor clamp upon exiting the chamber.	upport equipment.	Remote supp	ort equipment	t was located outside
 A second LISN was used for all local suber. Any cables running to remote suppor clamp upon exiting the chamber. S: Temperature: Rel. Humidity: 	upport equipment.	Remote supp	ort equipment	t was located outside
 A second LISN was used for all local suber. Any cables running to remote suppor clamp upon exiting the chamber. S: Temperature: 	upport equipment. t equipment where 24 °C	Remote supp	ort equipment	t was located outside
. A second LISN was used for all local suber. Any cables running to remote suppor clamp upon exiting the chamber. s: Temperature: Rel. Humidity: ts Test Performed	upport equipment. t equipment where 24 °C 42 % Limit	Remote supp e routed throug	ort equipment h metal condu Margin	t was located outside
. A second LISN was used for all local suber. Any cables running to remote suppor clamp upon exiting the chamber. s: Temperature: Rel. Humidity:	upport equipment. t equipment where 24 °C 42 %	Remote supp e routed throug	ort equipment h metal condu Margin 42.1dBµV @	t was located outside
	B, EN 55022:2006 + A1, VCCI & KN22 Conducte <i>(Elliott Laboratories Fremont</i> Is The objective of this test session is to per specification listed above. 8/29/2011 Hong Stenerson	SB, EN 55022:2006 + A1, VCCI & KN22 Conducted Emissions (Elliott Laboratories Fremont Facility, Semi-An Is The objective of this test session is to perform final qualifica specification listed above. 8/29/2011 Config. Use Hong Stenerson Config Chang Fremont Chamber #5 EUT Voltage	Inchez Image: Series State	Inchez Class: 5B, EN 55022:2006 + A1, VCCI & KN22 Class: Conducted Emissions Conducted Emissions Class: Conducted Emissions Class: Class: Conducted Emissions Class: Conducted Emissions Class: Class:

(Ubiquiti Net	works					Job Number:	J83026
							T-Log Number:	
Model	AirCam Dor	ne					Account Manager:	Susan Pelzl
	Jennifer Sa							
Standard	FCC Part 1	FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22						А
Run 1 (Cor Proliminary		nas conturor	l durina pro	scan (noak	roadings v	s. average limit	N	
Frequency	Level	AC	<u> </u>	ss B	Detector	Comments)	
MHz	dBµV	Line	Limit	Margin	QP/Ave	Comments		
0.346	44.8	Line 1	49.1	-4.3	Peak			
1.308	38.0	Line 1	46.0	-8.0	Peak			
16.229	44.0	Line 1	50.0	-6.0	Peak			
0.356	50.9	Neutral	48.8	2.1	Peak			
0.805	44.3	Neutral	46.0	-1.7	Peak			
1.343	43.6	Neutral	46.0	-2.4	Peak			
1.877	43.1	Neutral	46.0	-2.9	Peak			
	•				•	•		
inal quasi	-peak and a	verage readi	ngs					
Frequency	Level	AC	Cla	ss B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.356	42.1	Neutral	48.8	-6.7	AVG	AVG (0.10s)		
0.356	50.6	Neutral	58.8	-8.2	QP	QP (1.00s)		
16.229	41.6	Line 1	50.0	-8.4	AVG	AVG (0.10s)		
1.343	35.5	Neutral	46.0	-10.5	AVG	AVG (0.10s)		
0.805	35.3	Neutral	46.0	-10.7	AVG	AVG (0.10s)		
1.877	34.3	Neutral	46.0	-11.7	AVG	AVG (0.10s)		
0.805	43.7	Neutral	56.0	-12.3	QP	QP (1.00s)		
1.343	43.1	Neutral	56.0	-12.9	QP	QP (1.00s)		
1.877	42.4	Neutral	56.0	-13.6	QP	QP (1.00s)		
16.229	44.1	Line 1	60.0	-15.9	QP	QP (1.00s)		
0.346	42.1	Line 1	59.1	-17.0	QP	QP (1.00s)		
	28.7	Line 1	49.1	-20.4	AVG	AVG (0.10s)		
0.346	35.2	Line 1	56.0	-20.8	QP	QP (1.00s)		
0.346 1.308 1.308	24.3	Line 1	46.0	-21.7	AVG	AVG (0.10s)		



	: Ubiquiti Net	works					Job Number:	J83026
							T-Log Number:	
Model	: AirCam Dor	ne					Account Manager:	
		Jennifer Sanchez						
Standard	FCC Part 1	FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22						А
un 2 (Cor		_		<i>.</i> .				
						s. average limit))	
requency		AC		ss B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.363	47.0	Neutral	48.6	-1.6	Peak			
1.012	41.8	Neutral	46.0	-4.2	Peak			
3.273	41.6	Neutral	46.0	-4.4	Peak			
16.229	45.2	Neutral	50.0	-4.8	Peak			
0.198	46.9 34.8	Line 1 Line 1	53.7 46.0	-6.8 -11.2	Peak Peak			
16.229	44.9	Line 1	40.0 50.0	-11.2	Peak			
10.227	44.7		50.0	-J.1	FEAN			
inal quasi	i-peak and a	verage readi	nas					
requency		AC		ss B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave	o on monto		
16.229	44.1	Neutral	50.0	-5.9	AVG	AVG (0.10s)		
16.229	42.9	Line 1	50.0	-7.1	AVG	AVG (0.10s)		
0.363	39.6	Neutral	48.7	-9.1	AVG	AVG (0.10s)		
0.363	48.2	Neutral	58.7	-10.5	QP	QP (1.00s)		
16.229	45.0	Neutral	60.0	-15.0	QP	QP (1.00s)		
16.229	44.9	Line 1	60.0	-15.1	QP	QP (1.00s)		
1.012	30.7	Neutral	46.0	-15.3	AVG	AVG (0.10s)		
1.012	40.7	Neutral	56.0	-15.3	QP	QP (1.00s)		
2 2 2 2	38.6	Neutral	56.0	-17.4	QP	QP (1.00s)		
3.273	28.0	Neutral	46.0	-18.0	AVG	AVG (0.10s)		
3.273	44.5	Line 1	63.7	-19.2	QP	QP (1.00s)		
3.273 0.198			56.0	-22.8	QP	QP (1.00s)		
3.273 0.198 1.022	33.2	Line 1						
3.273 0.198		Line 1 Line 1 Line 1	53.7 46.0	-24.0 -24.3	AVG AVG	AVG (0.10s) AVG (0.10s)		


6	Ellic						EMC Test
Client	: Ubiquiti Net	works					Job Number: J83026
							T-Log Number: T84420
Model	AirCam Dor	AirCam Dome					Account Manager: Susan Pelz
Contact	: Jennifer Sa	Jennifer Sanchez					
Standard	FCC Part 1	5B, EN 55022	:2006 + A1,	VCCI & KN2	2		Class: A
ın 3 (Cor	ntinued)						
	y peak readi				readings v	s. average limit)	
equency	Level	AC	Clas		Detector	Comments	
MHz	dBµV	Line	Limit	Margin	QP/Ave		
0.352	44.8	Line 1	48.9	-4.1	Peak		
1.731	46.7	Line 1	46.0	0.7	Peak		
1.262	46.3	Line 1	46.0	0.3	Peak		
2.794	46.0	Line 1	46.0	0.0	Peak		
2.298	45.8	Line 1	46.0	-0.2	Peak		
16.229	46.8	Line 1	50.0	-3.2	Peak		
0.347	49.1	Neutral	49.0	0.1	Peak		
0.362	49.6	Neutral	48.7	0.9	Peak		
0.799	42.8	Neutral	46.0	-3.2	Peak		
1.303	41.8	Neutral	46.0	-4.2	Peak		
nal quas	-peak and a	verage readi	nas				
equency		AC	Clas	ss B	Detector	Comments	
MHz	dBµV	Line	Limit	Margin	QP/Ave		
6.229	45.7	Line 1	50.0	-4.3	AVG	AVG (0.10s)	
0.347	41.8	Neutral	49.0	-7.2	AVG	AVG (0.10s)	
,	40.0	Neutral	48.7	-8.7	AVG	AVG (0.10s)	
0.362	49.7	Neutral	59.0	-9.3	QP	QP (1.00s)	
	49.7		58.7	-9.8	QP	OD(1.00c)	
0.347	49.7	Neutral	50.7	7.0	Q.1	QP (1.00s)	
0.347		Neutral Line 1	46.0	-9.9	AVG	AVG (0.10s)	
0.347 0.362	48.9						
0.347 0.362 2.298 2.794	48.9 36.1	Line 1	46.0	-9.9	AVG	AVG (0.10s)	
0.347 0.362 2.298 2.794 1.731	48.9 36.1 35.5	Line 1 Line 1	46.0 46.0	-9.9 -10.5	AVG AVG	AVG (0.10s) AVG (0.10s)	
0.347 0.362 2.298 2.794 1.731 1.262	48.9 36.1 35.5 34.4	Line 1 Line 1 Line 1	46.0 46.0 46.0	-9.9 -10.5 -11.6	AVG AVG AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s)	
0.347 0.362 2.298 2.794 1.731 1.262 2.298	48.9 36.1 35.5 34.4 34.1	Line 1 Line 1 Line 1 Line 1	46.0 46.0 46.0 46.0	-9.9 -10.5 -11.6 -11.9	AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)	
0.347 0.362 2.298 2.794 1.731 1.262 2.298 0.799	48.9 36.1 35.5 34.4 34.1 44.1	Line 1 Line 1 Line 1 Line 1 Line 1	46.0 46.0 46.0 46.0 56.0	-9.9 -10.5 -11.6 -11.9 -11.9	AVG AVG AVG AVG QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s)	
0.347 0.362 2.298 2.794 1.731 1.262 2.298 0.799 2.794	48.9 36.1 35.5 34.4 34.1 44.1 33.9	Line 1 Line 1 Line 1 Line 1 Line 1 Neutral	46.0 46.0 46.0 56.0 46.0	-9.9 -10.5 -11.6 -11.9 -11.9 -12.1	AVG AVG AVG AVG QP AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s)	
).347).362 2.298 2.794 1.731 1.262 2.298).799 2.794 1.303	48.9 36.1 35.5 34.4 34.1 44.1 33.9 43.8	Line 1 Line 1 Line 1 Line 1 Line 1 Neutral Line 1	46.0 46.0 46.0 56.0 46.0 56.0	-9.9 -10.5 -11.6 -11.9 -11.9 -12.1 -12.2	AVG AVG AVG QP AVG QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s)	
D.347 D.362 2.298 2.794 1.731 1.262 2.298 D.799 2.794 1.303 6.229	48.9 36.1 35.5 34.4 34.1 44.1 33.9 43.8 33.4	Line 1 Line 1 Line 1 Line 1 Line 1 Neutral Neutral	46.0 46.0 46.0 56.0 46.0 56.0 46.0 46.0	-9.9 -10.5 -11.6 -11.9 -11.9 -12.1 -12.2 -12.6	AVG AVG AVG QP AVG QP AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s)	
0.347 0.362 2.298 2.794 1.731 1.262 2.298 0.799 2.794 1.303 16.229 1.262	48.9 36.1 35.5 34.4 34.1 44.1 33.9 43.8 33.4 47.1	Line 1 Line 1 Line 1 Line 1 Line 1 Neutral Line 1 Line 1	$ \begin{array}{r} 46.0 \\ 46.0 \\ 46.0 \\ 56.0 \\ 46.0 \\ 56.0 \\ 46.0 \\ 46.0 \\ 60.0 \\ \end{array} $	-9.9 -10.5 -11.6 -11.9 -11.9 -12.1 -12.2 -12.6 -12.9	AVG AVG AVG QP AVG QP AVG QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s)	
0.347 0.362 2.298 2.794 1.731 1.262 2.298 0.799 2.794 1.303 16.229 1.262 1.731	48.9 36.1 35.5 34.4 34.1 44.1 33.9 43.8 33.4 47.1 43.0	Line 1 Line 1 Line 1 Line 1 Neutral Line 1 Neutral Line 1 Line 1	$ \begin{array}{r} 46.0 \\ 46.0 \\ 46.0 \\ 56.0 \\ 46.0 \\ 56.0 \\ 46.0 \\ 60.0 \\ 56.0 \\ \end{array} $	-9.9 -10.5 -11.6 -11.9 -11.9 -12.1 -12.2 -12.6 -12.9 -13.0	AVG AVG AVG QP AVG QP AVG QP QP QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	
0.347 0.362 2.298	48.9 36.1 35.5 34.4 34.1 44.1 33.9 43.8 33.4 47.1 43.0 42.8	Line 1 Line 1 Line 1 Line 1 Neutral Line 1 Neutral Line 1 Line 1 Line 1	$\begin{array}{r} 46.0\\ 46.0\\ 46.0\\ 56.0\\ 46.0\\ 56.0\\ 46.0\\ 56.0\\ 46.0\\ 56.0\\ 56.0\\ 56.0\\ 56.0\\ \end{array}$	-9.9 -10.5 -11.6 -11.9 -11.9 -12.1 -12.2 -12.6 -12.6 -12.9 -13.0 -13.2	AVG AVG AVG QP AVG QP AVG QP QP QP QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	
0.347 0.362 2.298 2.794 1.731 1.262 2.298 0.799 2.794 1.303 16.229 1.262 1.731 0.799	48.9 36.1 35.5 34.4 34.1 44.1 33.9 43.8 33.4 47.1 43.0 42.8 42.3	Line 1 Line 1 Line 1 Line 1 Neutral Line 1 Neutral Line 1 Line 1 Line 1 Neutral	$\begin{array}{r} 46.0\\ 46.0\\ 46.0\\ 56.0\\ 46.0\\ 56.0\\ 46.0\\ 56.0\\ 46.0\\ 56.0\\ 56.0\\ 56.0\\ 56.0\\ 56.0\\ 56.0\\ \end{array}$	-9.9 -10.5 -11.6 -11.9 -12.1 -12.2 -12.6 -12.9 -13.0 -13.2 -13.7	AVG AVG AVG QP AVG QP AVG QP QP QP QP QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	

C E	Ellic	ott			EM	C Test Data			
Client:	Ubiquiti Netv	vorks			Job Number:	J83026			
Madah	Al-Com Dom			T-	Log Number:	T84420			
Moder	AirCam Dom	1e		Ассо	unt Manager:	Susan Pelzl			
	Jennifer Sar								
Standard:	FCC Part 15	B, EN 55022:2006 + A1, VCCI & K		Class:	A				
			iated Emissions mont Facility, Semi-Anec	hoic Cham	ber)				
Test Spec	cific Detail	S							
	Objective:	The objective of this test session is specification listed above.	s to perform final qualification	on testing of	f the EUT with	n respect to the			
Те		10/17/2011 Vishal Narayan Fremont Chamber #3	1 None 220V/60Hz						
The EUT an was located and when po The test dist Note, prelim antenna. M antenna, an	General Test Configuration The EUT and any local support equipment were located on the turntable for radiated emissions testing. Any remote support equipment was located outside the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber. The test distance and extrapolation factor (if applicable) are detailed under each run description. Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables. Ambient Conditions: Temperature: 20 °C Rel. Humidity: 41 %								
	ın #	Test Performed	Limit	Result	Margin				
	1	Radiated Emissions 30 - 1000 MHz, Preliminary	Class A	Pass	43.9dBµV/m (-3.1dB)	n @ 800.00MHz			
	2	Radiated Emissions 30 - 1000 MHz, Maximized	Class A	Pass	44.3dBµV/m (-2.7dB)	n @ 800.00MHz			
No modifi	cations were	e During Testing made to the EUT during testing ne Standard							

No deviations were made from the requirements of the standard.

		A company						EM	C Test
Client:	Ubiquiti Net	works						Job Number:	J83026
							T-	Log Number:	T84420
Model:	AirCam Don	ne				-		unt Manager:	
	Jennifer Sar							ŭ	
Standard:	FCC Part 15	5B, EN 550	22:2006 + A	1, VCCI & KI	N22			Class:	А
ntinuatio	on of Run #1								
2	peak readir	- × · · · ·			Detector	۸ – ¦ به د باله	Listalat	Commonto	
requency	Level	Pol		2 Class A	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
<u>400.028</u> 300.000	38.1 44.9	H H	47.0 47.0	-8.9 -2.1	Peak Peak	295 274	2.5 1.0		
150.661	44.9 29.1	п V	47.0	-2.1 -10.9	Peak Peak	274 273	1.0 1.5		
<u>50.001</u> 83.637	<i>29.1</i> 41.1	V	40.0	- <i>10.9</i> -5.9	Peak	273 272	3.0		
92.425	41.1 <i>35.8</i>	V H	47.0	-5.9 -11.2	Peak Peak	212 269	3.0 2.5		
28.872	35.8 35.9	V V	47.0	- <i>11.2</i> -4.1	Peak	2 <i>09</i> 252	2.5 1.5		
42.986	28.1	V	40.0	-4.1	Peak	232	1.0		
4 <i>2.960</i> 932.778	40.8	H H	40.0	-11.9 -6.2	Peak	230	2.5		
39.161	40.0	V	47.0	-3.9	Peak	180	3.0	1	
73.674	38.8	V	47.0	-8.2	Peak	178	3.0	1	
71.764	27.8	V	40.0	-12.2	Peak	170	1.0		
20.166	42.7	V	47.0	-4.3	Peak	17	2.0		
-	•	•		-				•	
liminary	<u>quasi-peak</u>	readings			T interface c	ables)			
equency	Level	Pol	EN55022	2 Class A	Detector	Azimuth	Height	Comments	
		/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
MHz	dBµV/m	v/h							
MHz 00.000	43.9	Н	47.0	-3.1	QP	273	1.0	QP (1.00s)	
MHz 00.000 28.872	43.9 34.9	H V	40.0	-5.1	QP	275	1.0	QP (1.00s)	
MHz 800.000 28.872 00.028	43.9 34.9 34.7	H V H	40.0 47.0	-5.1 -12.3	QP QP	275 293	1.0 2.5	QP (1.00s) QP (1.00s)	
MHz 00.000 28.872 00.028 32.672	43.9 34.9 34.7 33.6	H V H V	40.0 47.0 47.0	-5.1 -12.3 -13.4	QP QP QP	275 293 179	1.0 2.5 3.0	QP (1.00s) QP (1.00s) QP (1.00s)	
MHz 300.000 28.872 400.028 32.672 373.674	43.9 34.9 34.7 33.6 33.0	H V H V V	40.0 47.0 47.0 47.0	-5.1 -12.3 -13.4 -14.0	QP QP QP QP	275 293 179 179	1.0 2.5 3.0 3.0	QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	
MHz 800.000 28.872 400.028 932.672 873.674 920.166	43.9 34.9 34.7 33.6 33.0 30.0	H V H V V V	40.0 47.0 47.0 47.0 47.0	-5.1 -12.3 -13.4 -14.0 -17.0	QP QP QP QP QP QP	275 293 179 179 179	1.0 2.5 3.0 3.0 3.0	QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	
MHz 00.000 28.872 00.028 32.672 73.674 20.166 932.753	43.9 34.9 34.7 33.6 33.0 30.0 29.1	H V H V V V H	40.0 47.0 47.0 47.0 47.0 47.0 47.0	-5.1 -12.3 -13.4 -14.0 -17.0 -17.9	QP QP QP QP QP QP	275 293 179 179 179 210	1.0 2.5 3.0 3.0 3.0 2.5	QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	
MHz 00.000 28.872 00.028 32.672 73.674 20.166 932.753	43.9 34.9 34.7 33.6 33.0 30.0	H V H V V V	40.0 47.0 47.0 47.0 47.0	-5.1 -12.3 -13.4 -14.0 -17.0	QP QP QP QP QP QP	275 293 179 179 179	1.0 2.5 3.0 3.0 3.0	QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	
MHz 800.000 128.872 400.028 932.672 873.674 920.166 932.753 883.637 un #2: Ma	43.9 34.9 34.7 33.6 33.0 30.0 29.1 25.9 aximized Rea	H V V V H V adings Fro	40.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0	-5.1 -12.3 -13.4 -14.0 -17.0 -17.9 -21.1	QP QP QP QP QP QP	275 293 179 179 179 210 272	1.0 2.5 3.0 3.0 3.0 2.5	QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	
MHz 300.000 128.872 400.028 332.672 373.674 920.166 932.753 383.637 an #2: Ma aximized	43.9 34.9 34.7 33.6 33.0 30.0 29.1 25.9 aximized Rea quasi-peak	H V V V V H V adings Fro	40.0 47.0 47.0 47.0 47.0 47.0 47.0 0m Run #1 includes ma	-5.1 -12.3 -13.4 -14.0 -17.0 -17.9 -21.1	QP QP QP QP QP QP QP	275 293 179 179 210 272 ace cables)	1.0 2.5 3.0 3.0 2.5 3.0	QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	
MHz 00.000 28.872 00.028 32.672 73.674 20.166 932.753 83.637 n #2: Ma ximized	43.9 34.9 34.7 33.6 33.0 30.0 29.1 25.9 aximized Rea quasi-peak	H V V V H V adings Fro readings (40.0 47.0 47.0 47.0 47.0 47.0 47.0 5000 Run #1 includes ma	-5.1 -12.3 -13.4 -14.0 -17.0 -17.9 -21.1 nipulation o	QP QP QP QP QP QP OF EUT interfa	275 293 179 179 210 272 ace cables)	1.0 2.5 3.0 3.0 2.5 3.0 Height	QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	
MHz 00.000 28.872 00.028 32.672 73.674 20.166 932.753 83.637 n #2: Ma ximized equency MHz	43.9 34.9 34.7 33.6 33.0 30.0 29.1 25.9 aximized Rea quasi-peak	H V V V H V adings Fro readings (Pol v/h	40.0 47.0 47.0 47.0 47.0 47.0 47.0 5000 Run #1 includes matching EN55022 Limit	-5.1 -12.3 -13.4 -14.0 -17.0 -17.9 -21.1 nipulation of 2 Class A Margin	QP QP QP QP QP QP OF EUT interfa	275 293 179 179 210 272 ace cables) Azimuth degrees	1.0 2.5 3.0 3.0 2.5 3.0 Height meters	QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	
MHz 00.000 28.872 00.028 32.672 73.674 20.166 932.753 83.637 n #2: Ma ximized equency MHz 00.000	43.9 34.9 34.7 33.6 33.0 29.1 25.9 aximized Rea quasi-peak Level dBμV/m 44.3	H V V V H V adings Fro readings (40.0 47.0 47.0 47.0 47.0 47.0 47.0 0m Run #1 includes ma EN55022 Limit 47.0	-5.1 -12.3 -13.4 -14.0 -17.0 -17.9 -21.1 nipulation of 2 Class A Margin -2.7	QP QP QP QP QP QP DF EUT interfa	275 293 179 179 210 272 ace cables) Azimuth degrees 275	1.0 2.5 3.0 3.0 2.5 3.0 Height meters 1.0	QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) Comments QP (1.00s)	
MHz 00.000 28.872 00.028 32.672 73.674 20.166 932.753 83.637 n #2: Ma ximized equency MHz 00.000 28.872	43.9 34.9 34.7 33.6 33.0 29.1 25.9 aximized Rea quasi-peak Level dBμV/m 44.3 34.9	H V V V V H V adings Fro readings (Pol V/h H V	40.0 47.0 47.0 47.0 47.0 47.0 47.0 0 m Run #1 includes ma EN55022 Limit 47.0 40.0	-5.1 -12.3 -13.4 -14.0 -17.0 -17.9 -21.1 nipulation of 2 Class A Margin -2.7 -5.1	QP QP QP QP QP QP Detector Pk/QP/Avg QP QP	275 293 179 179 210 272 ace cables) Azimuth degrees 275 275	1.0 2.5 3.0 3.0 2.5 3.0 Height meters 1.0 1.0	QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	
MHz 00.000 28.872 00.028 32.672 73.674 20.166 932.753 83.637 n #2: Ma ximized equency MHz 00.000 28.872 00.028	43.9 34.9 34.7 33.6 33.0 30.0 29.1 25.9 aximized Real quasi-peak Level dBμV/m 44.3 34.9 34.7	H V V V H V adings Fro readings (Pol V/h H	40.0 47.0 47.0 47.0 47.0 47.0 47.0 5000 Run #1 includes matrix EN55022 Limit 47.0 40.0 47.0	-5.1 -12.3 -13.4 -14.0 -17.0 -17.9 -21.1 nipulation of 2 Class A Margin -2.7 -5.1 -12.3	QP QP QP QP QP QP DF EUT interfa	275 293 179 179 210 272 ace cables) Azimuth degrees 275	1.0 2.5 3.0 3.0 2.5 3.0 Height meters 1.0 1.0 2.5	QP (1.00s) QP (1.00s)	
MHz 300.000 28.872 400.028 32.672 373.674 920.166 932.753 383.637 m #2: Ma aximized requency	43.9 34.9 34.7 33.6 33.0 29.1 25.9 aximized Rea quasi-peak Level dBμV/m 44.3 34.9	H V H V V H V adings Fro readings (Pol v/h H V H	40.0 47.0 47.0 47.0 47.0 47.0 47.0 0 m Run #1 includes ma EN55022 Limit 47.0 40.0	-5.1 -12.3 -13.4 -14.0 -17.0 -17.9 -21.1 nipulation of 2 Class A Margin -2.7 -5.1	QP QP QP QP QP QP Detector Pk/QP/Avg QP QP QP QP	275 293 179 179 210 272 ace cables) Azimuth degrees 275 275 293	1.0 2.5 3.0 3.0 2.5 3.0 Height meters 1.0 1.0	QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	

EMC Test Data	ЕМС	Test	Data
---------------	-----	------	------

	An DLLES company		
Client:	Ubiquiti Networks	Job Number:	J83026
Model	AirCam Dome	T-Log Number:	T84420
wouer.		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22	Class:	А

Radiated Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 8/26/2011 Test Engineer: Peter Sales Test Location: Fremont Chamber #3 Config. Used: 1 Config Change: None EUT Voltage: 230V/50Hz

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing. Any remote support equipment was located outside the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

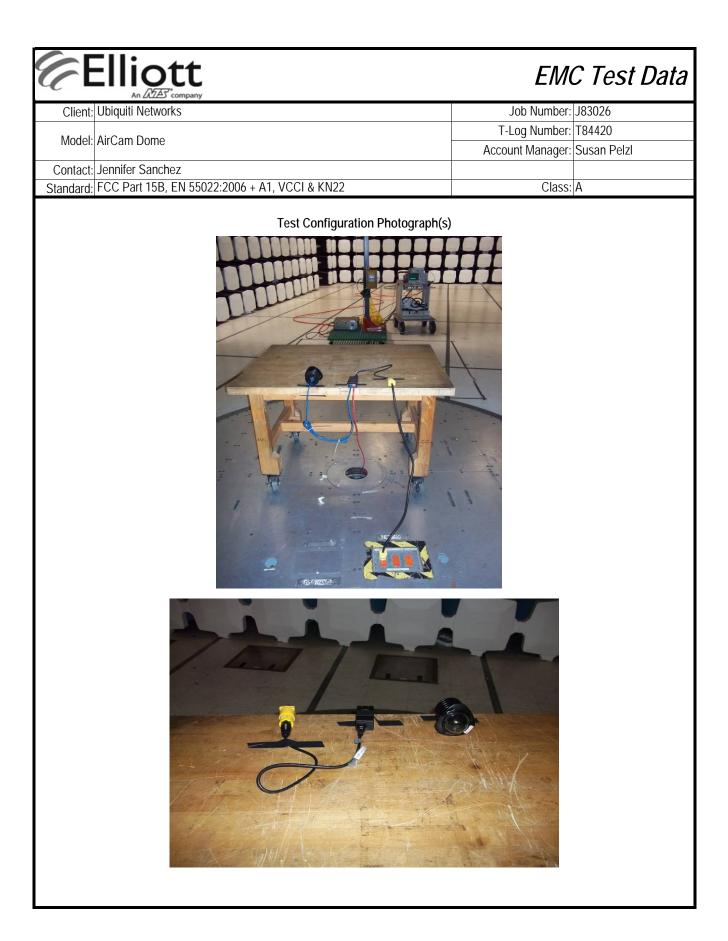
Ambient Conditions:

Temperature:	23 °C
Rel. Humidity:	38 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
2	Radiated Emissions	FCC Class B	Pass	47.7dBµV/m @ 1350.1MHz
5	1 GHz - 2 GHz Maximized	FUU Class D	Pass	(-6.3dB)

Modifications Made During Testing


No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

		vorks						Job Number:	500020
Model [.]	AirCam Dom	۱e						Log Number:	
							Ассо	unt Manager:	Susan Pelzl
	Jennifer Sar FCC Part 15		122.2006 L A		100			Class:	٨
.anuaru:	FUU Fail 10	ID, EN 330	22.2000 + A		NZZ			Class.	A
#3: Ma	aximized Rea	adings, 10	00 - 2000 M	Hz					
80.0									
70.0	-								
Ê 5 60.0	_								
å								•	
ğ 50.0	- •		ľ.	•		•			
_			11 .		1 1	1		1	
9 40 0			M. L I						
40.0	- for the	half	Walkel	A. M. L. L.	1 1 1 1 1	L. Mark	A.	m	the filler
40.0 40.0 30.0	When a c	halp	Man International	Muluhu	hilling	Whit	www.A	man	when when
-	When a c	halp	14 holder holder	Muhulud	hhh	lwhit	uman	urman M	whenthe
30.0	-	hulp		Muhuhu			www.A		When What
30.0 20.0	-	₩ ₩ ₩ 00 ^{°°} 12	1441/ml.ml	0 1400	1500	1600	1700		Mu Mu
30.0 20.0	-			0 1400	1500 requency (M	1600	1700 '	1800 19	wh
30.0 20.0	000 11	00 12	200 130	0 1400 F	1500 Frequency (M	1600 Hz)	1700	1800 19	900 2000
30.0	000 11	00 12	200 130	0 1400 F Test D	1500	1600 IHz) Limit D	istance	1800 19 Extrapola	100 Factor
30.0 20.0 1	000 11	00 12 quency Ra 00 - 2000 N	200 130 nge /Hz	0 1400 F Test D	1500 Frequency (M istance 3	1600 IHz) Limit D	1700 istance	1800 19 Extrapola	900 2000 tion Factor
30.0 20.0 1 minary	000 11 Free 100	00 12 quency Ra 10 - 2000 M ngs captur	nge //Hz red during p	0 1400 F Test D re-scan (pea	1500 Frequency (M istance 3 ak readings (1600 IHz) Limit D	1700 istance 3 limit)	1800 19 Extrapolat	900 2000 tion Factor
30.0 20.0 1 <u>iminary</u> quency	000 11 Free 100 peak readir Level	quency Ra 00 - 2000 M ngs captur Pol	nge //Hz red during p	0 1400 F Test D re-scan (pea C B	1500 Frequency (M istance 3 ak readings v Detector	1600 Hz) Limit D (s. average Azimuth	1700 istance 3 limit) Height	1800 19 Extrapola	900 2000 tion Factor
30.0 20.0 1 iminary quency //Hz	peak readir Level dBµV/m	quency Ra quency Ra 00 - 2000 M ngs captur Pol v/h	nge NHz ed during p FC Limit	0 1400 F Test D re-scan (pea C B Margin	1500 Frequency (M istance 3 ak readings v Detector Pk/QP/Avg	1600 Hz) Limit D /s. average Azimuth degrees	1700 istance 3 limit) Height meters	1800 19 Extrapolat 0 Comments	900 2000 tion Factor .0
₹ 30.0 20.0 1 <u>liminary</u> equency <u>MHz</u> 81.690	 .000 11 Free 100 peak readir Level dBμV/m 55.6	00 12 quency Ra 00 - 2000 N ngs captur Pol V/h V	nge //Hz red during p FC Limit 54.0	0 1400 F Test D re-scan (pea C B Margin 1.6	1500 Frequency (M istance 3 Ak readings v Detector Pk/QP/Avg Peak	1600 Hz) Limit D /s. average Azimuth degrees 214	1700 istance 3 limit) Height meters 1.0	1800 19 Extrapolat 0 Comments	900 2000 tion Factor
30.0 20.0 1	peak readir Level dBµV/m	00 12 quency Ra 00 - 2000 M ngs captur Pol v/h V H H H	nge NHz ed during p FC Limit	0 1400 F Test D re-scan (pea C B Margin	1500 Frequency (M istance 3 ak readings v Detector Pk/QP/Avg	1600 Hz) Limit D /s. average Azimuth degrees	1700 istance 3 limit) Height meters	1800 19 Extrapolat 0 Comments	900 2000 tion Factor .0
30.0 20.0 1 <u>minary</u> uency IHz 1.690 0.070	 0000 11 Fre- 100 peak readir Level dBµV/m 55.6 51.7	00 12 quency Ra 00 - 2000 N ngs captur Pol V/h V H	nge //Hz red during p FC Limit 54.0 54.0	0 1400 F Test D re-scan (pea C B Margin 1.6 -2.3	1500 Frequency (M istance 3 ak readings v Detector Pk/QP/Avg Peak Peak	1600 Hz) Limit D /s. average Azimuth degrees 214 52	1700 istance 3 limit) Height meters 1.0 2.2	1800 19 Extrapolat 0 Comments	900 2000 tion Factor .0

Contact: Jennifer Sanchez Class: A Standard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A un #3: Maximized Readings, 1000 - 2000 MHz (continue) Class: A Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 material peak and average readings requency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 0055.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 600.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 200.040 45.1 H 54.0 -8.9 AVG	Model: AirCam Dome Account Manager: Susan Pelzl Contact: Jennifer Sanchez Class: A Standard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A um #3: Maximized Readings, 1000 - 2000 MHz (continue) Class: A Image: Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 nal peak and average readings requency Level Pol FCC B Detector Azimuth Height Comments MHz dB _µ U/m v/h Limit Margin Pk/QP/Avg degrees meters 350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 600.110 45.9 V 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 200.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 200.060	Model: ArCam Dome Account Manager: Susan Pelzl Contact: Jennifer Sanchez Class: A tandard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A n#3: Maximized Readings, 1000 - 2000 MHz (continue) Class: A Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 al peak and average readings equency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 41.7.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 <td< th=""><th>Model: AirCam Dome Account Manager: Susan Pelzl Contact: Jennifer Sanchez Class: A candard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A #3: Maximized Readings, 1000 - 2000 MHz (continue) Class: A #43: Maximized Readings, 1000 - 2000 MHz (continue) Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 al peak and average readings Margin Pk/QP/Avg degrees meters quency Level Pol FCC B Detector Azimuth Height Comments MHz dBµU/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.060 55.8 H 74.0 <td< th=""><th>Model: AirCam Dome Account Manager: Susan Pelzl Contact: Jennifer Sanchez Class: A andard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A #3: Maximized Readings, 1000 - 2000 MHz (continue) Class: A #43: Maximized Readings, 1000 - 2000 MHz (continue) Class: A #43: Maximized Readings, 1000 - 2000 MHz (continue) 3 0.0 If peak and average readings Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 If peak and average readings Guency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/OP/Avg degrees meters 50.10 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 20.110 45.9</th><th>Contact Standard</th><th></th><th colspan="8">t: Ubiquiti Networks Job Number: J83026</th></td<></th></td<>	Model: AirCam Dome Account Manager: Susan Pelzl Contact: Jennifer Sanchez Class: A candard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A #3: Maximized Readings, 1000 - 2000 MHz (continue) Class: A #43: Maximized Readings, 1000 - 2000 MHz (continue) Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 al peak and average readings Margin Pk/QP/Avg degrees meters quency Level Pol FCC B Detector Azimuth Height Comments MHz dBµU/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.060 55.8 H 74.0 <td< th=""><th>Model: AirCam Dome Account Manager: Susan Pelzl Contact: Jennifer Sanchez Class: A andard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A #3: Maximized Readings, 1000 - 2000 MHz (continue) Class: A #43: Maximized Readings, 1000 - 2000 MHz (continue) Class: A #43: Maximized Readings, 1000 - 2000 MHz (continue) 3 0.0 If peak and average readings Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 If peak and average readings Guency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/OP/Avg degrees meters 50.10 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 20.110 45.9</th><th>Contact Standard</th><th></th><th colspan="8">t: Ubiquiti Networks Job Number: J83026</th></td<>	Model: AirCam Dome Account Manager: Susan Pelzl Contact: Jennifer Sanchez Class: A andard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A #3: Maximized Readings, 1000 - 2000 MHz (continue) Class: A #43: Maximized Readings, 1000 - 2000 MHz (continue) Class: A #43: Maximized Readings, 1000 - 2000 MHz (continue) 3 0.0 If peak and average readings Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 If peak and average readings Guency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/OP/Avg degrees meters 50.10 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 20.110 45.9	Contact Standard		t: Ubiquiti Networks Job Number: J83026							
Contact: Jennifer Sanchez Standard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A Class: A Maximized Readings, 1000 - 2000 MHz (continue) Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 nal peak and average readings requency Level Pol FCC B Detector Azimuth Height Comments MHz dBµU/m v/h Level Pol FCC B Detector Azimuth Height Comments MHz dBµU/m v/h Limit Margin Pk/QP/Avg degrees meters i350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz; VB 10 Hz; Pk i0055.580 46.7 H 54.0 <td>Contact: Jennifer Sanchez Standard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A Class: A Maximized Readings, 1000 - 2000 MHz (continue) Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 0.0 nal peak and average readings requency Level Pol FCC B Detector Azimuth Height Comments MHz dBµU/m v/h Level Pol FCC B Detector Azimuth Height Comments MHz dBµU/m v/h Limit Margin Pk/QP/Avg degrees meters i350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz; VB 10 Hz; Pk i0055.580 46.7 H 54.0 -7.3</td> <td>Contact: Jennifer Sanchez tandard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A n #3: Maximized Readings, 1000 - 2000 MHz (continue) Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 al peak and average readings guency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.040 55.8 H 74.0 -21.5 PK</td> <td>Contact: Jennifer Sanchez Contact: Jennifer Sanchez Class: A Class: A Class: A Class: A Class: A Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 O.0 al peak and average readings quency Level Pol FCC B Detector Azimuth Height Comments MHZ dB_uevcl Level Pol FCC B Detector Azimuth Height Comments MHZ dB_uv/m v/h 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk Solution GO.120 47.7 V 54.0 -7.3 AVG 29<</td> <td>Contact: Jennifer Sanchez Class: A andard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A #3: Maximized Readings, 1000 - 2000 MHz (continue) Class: A #3: Maximized Readings, 1000 - 2000 MHz (continue) Extrapolation Factor Image: Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 Image: peak and average readings Equency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -7.3 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk</td> <td>Standard</td> <td colspan="9"></td>	Contact: Jennifer Sanchez Standard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A Class: A Maximized Readings, 1000 - 2000 MHz (continue) Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 0.0 nal peak and average readings requency Level Pol FCC B Detector Azimuth Height Comments MHz dBµU/m v/h Level Pol FCC B Detector Azimuth Height Comments MHz dBµU/m v/h Limit Margin Pk/QP/Avg degrees meters i350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz; VB 10 Hz; Pk i0055.580 46.7 H 54.0 -7.3	Contact: Jennifer Sanchez tandard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A n #3: Maximized Readings, 1000 - 2000 MHz (continue) Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 al peak and average readings guency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.040 55.8 H 74.0 -21.5 PK	Contact: Jennifer Sanchez Contact: Jennifer Sanchez Class: A Class: A Class: A Class: A Class: A Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 O.0 al peak and average readings quency Level Pol FCC B Detector Azimuth Height Comments MHZ dB_uevcl Level Pol FCC B Detector Azimuth Height Comments MHZ dB_uv/m v/h 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk Solution GO.120 47.7 V 54.0 -7.3 AVG 29<	Contact: Jennifer Sanchez Class: A andard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A #3: Maximized Readings, 1000 - 2000 MHz (continue) Class: A #3: Maximized Readings, 1000 - 2000 MHz (continue) Extrapolation Factor Image: Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 Image: peak and average readings Equency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -7.3 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk	Standard									
Standard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A Standard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A Imaximized Readings, 1000 - 2000 MHz (continue) Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 nal peak and average readings requency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters I350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz; VB 10 Hz; Pk 055.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz; VB 10 Hz; Pk 000.040 45.1 H 54.0 -8.1 AVG 188 1.0 RB 1 MHz; VB 3 MHz; Pk 000.040 45.1 H 54.0 -8.9 AVG 51	Standard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A Standard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A un #3: Maximized Readings, 1000 - 2000 MHz (continue) Extrapolation Factor Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 nal peak and average readings Everal Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters I350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz; VB 10 Hz; Pk 055.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz; VB 10 Hz; Pk 000.040 45.1 H 54.0 -8.1 AVG 188 1.0 RB 1 MHz; VB 10 Hz; Pk 200.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz; VB 3 MHz; Pk 200.040 55.8 H	tandard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A n #3: Maximized Readings, 1000 - 2000 MHz (continue) Extrapolation Factor 1000 - 2000 MHz 3 0.0 al peak and average readings Test Distance Limit Distance Extrapolation Factor al peak and average readings 3 0.0 al peak and average readings Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz; VB 10 Hz; Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz; VB 10 Hz; Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz; VB 10 Hz; Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz; VB 3 MHz; Pk 00.040 55.8 H 74.0 <td< td=""><td>Indicator Class: A Class: A Class: A Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 O.0 al peak and average readings quency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/OP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 2.2 RB 1 MHz;VB 10 Hz;Pk 00.10 45.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 <th c<="" td=""><td>andard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A #3: Maximized Readings, 1000 - 2000 MHz (continue) Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 Image readings guency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters Gonzol 47.7 V 54.0 -7.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 00.110 0.1 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 0.0400 0.040 -8.9</td><td>Standard</td><td>· lennifer Sar</td><td>chez</td><td></td><td></td><td></td><td></td><td>ALLU</td><td>uni Manayer. Susan Peizi</td></th></td></td<>	Indicator Class: A Class: A Class: A Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 O.0 al peak and average readings quency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/OP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 2.2 RB 1 MHz;VB 10 Hz;Pk 00.10 45.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 <th c<="" td=""><td>andard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A #3: Maximized Readings, 1000 - 2000 MHz (continue) Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 Image readings guency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters Gonzol 47.7 V 54.0 -7.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 00.110 0.1 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 0.0400 0.040 -8.9</td><td>Standard</td><td>· lennifer Sar</td><td>chez</td><td></td><td></td><td></td><td></td><td>ALLU</td><td>uni Manayer. Susan Peizi</td></th>	<td>andard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A #3: Maximized Readings, 1000 - 2000 MHz (continue) Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 Image readings guency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters Gonzol 47.7 V 54.0 -7.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 00.110 0.1 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 0.0400 0.040 -8.9</td> <td>Standard</td> <td>· lennifer Sar</td> <td>chez</td> <td></td> <td></td> <td></td> <td></td> <td>ALLU</td> <td>uni Manayer. Susan Peizi</td>	andard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A #3: Maximized Readings, 1000 - 2000 MHz (continue) Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 Image readings guency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters Gonzol 47.7 V 54.0 -7.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 00.110 0.1 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 0.0400 0.040 -8.9	Standard	· lennifer Sar	chez					ALLU	uni Manayer. Susan Peizi
Im #3: Maximized Readings, 1000 - 2000 MHz (continue) Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 nal peak and average readings requency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters I350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 1055.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 1600.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 1200.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 1200.040 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 1205.840 52.5	Im #3: Maximized Readings, 1000 - 2000 MHz (continue) Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 nal peak and average readings requency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters I350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 1055.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 1600.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 1200.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 1200.040 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 1205.840 52.5	#3: Maximized Readings, 1000 - 2000 MHz (continue) Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 al peak and average readings Equency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.060 55.8 H 74.0 -21.5 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4	#3: Maximized Readings, 1000 - 2000 MHz (continue) Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 al peak and average readings guency Level Pol FCC B Detector Azimuth Height Comments MHz dB _μ V/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -21.5 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 13 RB 1 MHz;VB 3 MHz;Pk 50.1	#3: Maximized Readings, 1000 - 2000 MHz (continue) Frequency Range Test Distance Limit Distance Extrapolation Factor 1000 - 2000 MHz 3 3 0.0 Il peak and average readings Event Pol FCC B Detector Azimuth Height Comments quency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 0.0420 5				22:2006 + A	1. VCCI & KI	N22			Class: A	
Image: 1000 - 2000 MHz 3 3 0.0 al peak and average readings Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters s50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk b55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk b00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk b00.040 45.1 H 54.0 -7.3 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk b00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk b00.060 55.8 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk b00.420 52.4 V 74.0 -21.6	Image: 1000 - 2000 MHz 3 3 0.0 al peak and average readings Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters s50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk b55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk b00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk b00.040 45.1 H 54.0 -7.3 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk b00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk b00.060 55.8 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk b00.420 52.4 V 74.0 -21.6	1000 - 2000 MHz 3 3 0.0 al peak and average readings Equency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -21.5 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk	1000 - 2000 MHz 3 0.0 al peak and average readings 90 FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.060 55.8 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188	1000 - 2000 MHz 3 0.0 I peak and average readings FCC B Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 50.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.420 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0	n#3: IV									
1000 - 2000 MHz 3 3 0.0 nal peak and average readings equency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 055.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 600.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 200.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 200.060 55.8 H 74.0 -21.5 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 055.840 52.5 H 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 350.160 50.1 V	1000 - 2000 MHz 3 3 0.0 nal peak and average readings equency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 055.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 600.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 200.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 200.060 55.8 H 74.0 -21.5 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 055.840 52.5 H 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 350.160 50.1 V	1000 - 2000 MHz 3 3 0.0 al peak and average readings Equency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -21.5 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk	1000 - 2000 MHz 3 0.0 al peak and average readings 90 FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.060 55.8 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188	1000 - 2000 MHz 3 0.0 I peak and average readings FCC B Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 50.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.420 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0		Fro		nao	Tost D	Vistanco	Limit D	istanco	Extrapolation Eactor	
nal peak and average readings equency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 055.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 060.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 200.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 200.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 055.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 600.420 52.4 V 74.0 -21.6 PK 188 1.0 <td>hal peak and average readings equency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 055.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 060.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 200.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 200.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 055.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 600.420 52.4 V 74.0 -21.6 PK 188 1.0<td>al peak and average readings equency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188</td><td>Al peak and average readings quency Level Pol FCC B Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0</td><td>I peak and average readings quency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 05.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 05.160 50.1 V 74.0 -21.6 PK 188 1.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	hal peak and average readings equency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 055.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 060.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 200.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 200.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 055.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 600.420 52.4 V 74.0 -21.6 PK 188 1.0 <td>al peak and average readings equency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188</td> <td>Al peak and average readings quency Level Pol FCC B Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0</td> <td>I peak and average readings quency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 05.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 05.160 50.1 V 74.0 -21.6 PK 188 1.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	al peak and average readings equency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188	Al peak and average readings quency Level Pol FCC B Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0	I peak and average readings quency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 05.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 05.160 50.1 V 74.0 -21.6 PK 188 1.0										
equency Level Pol FCC B Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 055.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 050.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 000.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 000.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 055.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 050.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk <th>equency Level Pol FCC B Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 055.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 050.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 000.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 000.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 055.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 050.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk <th>Adjumption Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk</th><th>quency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.</th><th>quency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.</th><th></th><th>100</th><th><u>70 - 2000 iv</u></th><th>11 12</th><th>l</th><th>5</th><th></th><th>)</th><th>0.0</th></th>	equency Level Pol FCC B Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 055.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 050.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 000.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 000.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 055.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 050.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk <th>Adjumption Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk</th> <th>quency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.</th> <th>quency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.</th> <th></th> <th>100</th> <th><u>70 - 2000 iv</u></th> <th>11 12</th> <th>l</th> <th>5</th> <th></th> <th>)</th> <th>0.0</th>	Adjumption Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk	quency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.	quency Level Pol FCC B Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.		100	<u>70 - 2000 iv</u>	11 12	l	5)	0.0	
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 055.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 600.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 200.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 200.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 200.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 055.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 600.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk <td>MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 055.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 600.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 200.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 200.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 200.060 55.8 H 74.0 -21.5 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 055.840 52.5 H 74.0 -21.6 PK 138 1.0 RB 1 MHz;VB 3 MHz;Pk 600.420 52.4 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk <td>MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk <t< td=""><td>MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk <t< td=""><td>MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.1 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.060 55.8 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk <t< td=""><td></td><td></td><td></td><td>50</td><td>0.0</td><td>Detector</td><td>A - ' 11-</td><td>11.1.1.1</td><td></td></t<></td></t<></td></t<></td></td>	MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 055.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 600.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 200.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 200.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 200.060 55.8 H 74.0 -21.5 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 055.840 52.5 H 74.0 -21.6 PK 138 1.0 RB 1 MHz;VB 3 MHz;Pk 600.420 52.4 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk <td>MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk <t< td=""><td>MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk <t< td=""><td>MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.1 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.060 55.8 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk <t< td=""><td></td><td></td><td></td><td>50</td><td>0.0</td><td>Detector</td><td>A - ' 11-</td><td>11.1.1.1</td><td></td></t<></td></t<></td></t<></td>	MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk <t< td=""><td>MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk <t< td=""><td>MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.1 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.060 55.8 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk <t< td=""><td></td><td></td><td></td><td>50</td><td>0.0</td><td>Detector</td><td>A - ' 11-</td><td>11.1.1.1</td><td></td></t<></td></t<></td></t<>	MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk <t< td=""><td>MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.1 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.060 55.8 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk <t< td=""><td></td><td></td><td></td><td>50</td><td>0.0</td><td>Detector</td><td>A - ' 11-</td><td>11.1.1.1</td><td></td></t<></td></t<>	MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.1 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.060 55.8 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk <t< td=""><td></td><td></td><td></td><td>50</td><td>0.0</td><td>Detector</td><td>A - ' 11-</td><td>11.1.1.1</td><td></td></t<>				50	0.0	Detector	A - ' 11-	11.1.1.1		
350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 055.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 600.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 200.040 45.1 H 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 200.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 200.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 055.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 600.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 350.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB	350.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 055.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 600.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 200.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 200.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 200.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 055.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 600.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 350.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3	50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.420 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk </td <td>50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.420 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk<!--</td--><td>50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.060 55.8 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk<</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>u u</td><td>Comments</td></td>	50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.420 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk </td <td>50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.060 55.8 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk<</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>u u</td> <td>Comments</td>	50.120 47.7 V 54.0 -6.3 AVG 349 1.9 RB 1 MHz;VB 10 Hz;Pk 55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 00.060 55.8 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk<								u u	Comments	
055.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 600.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 200.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 200.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 055.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 600.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 350.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk Https://doi.org/10.0 Https://doi.org/10.0 Avg/10.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk	055.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 600.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 200.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 200.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 055.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 600.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 350.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk 46.7 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk	55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission ab	55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 164 164 164 164 164 164 164	55.580 46.7 H 54.0 -7.3 AVG 290 1.3 RB 1 MHz;VB 10 Hz;Pk 00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk 61.6 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk						<u>u</u>			RB 1 MH⁊·\/R 10 H⁊·Dk	
00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz	00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz	00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission ab 1.0 RB 1 MHz;VB 3 MHz;Pk	00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk 6 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz, the limit is based on an average measurement. 10 RB 1 MHz;VB 3 MHz;Pk	00.110 45.9 V 54.0 -8.1 AVG 188 1.0 RB 1 MHz;VB 10 Hz;Pk 00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk 61.6 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk										
00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz, the limit is based on an average measurement.	00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above	00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission ab	00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk 6 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz 100 ms mission above 1 GHz 100 ms mission above 1 GHz	00.040 45.1 H 54.0 -8.9 AVG 51 2.2 RB 1 MHz;VB 10 Hz;Pk 00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk 61: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 Above 1 GHz, the limit is based on an average measurement. 1 addition, the peak reading of any emission above										
200.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 2055.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 200.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 200.420 50.1 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 250.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk Re 1 Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz, the limit is based on an average measurement.	200.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 255.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 200.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 350.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz, the limit is based on an average measurement.	00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission ab	00.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz, the limit is based on an average measurement.	D0.060 55.8 H 74.0 -18.2 PK 51 2.2 RB 1 MHz;VB 3 MHz;Pk 55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above										
55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk x00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk x50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk re<1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above Above 1 GHz Control of any emission above	055.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 055.840 50.1 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 050.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk Re 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above	55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission ab	55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz, the limit is based on an average measurement.	55.840 52.5 H 74.0 -21.5 PK 290 1.3 RB 1 MHz;VB 3 MHz;Pk 00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above										
00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above	00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above	00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission ab	00.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above	D0.420 52.4 V 74.0 -21.6 PK 188 1.0 RB 1 MHz;VB 3 MHz;Pk 50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission about the peak reading about the peak reading about the peak reading abou										
50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz, the limit is based on an average measurement.	50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz, the limit is based on an average measurement.	50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission ab	50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz, the limit is based on an average measurement.	50.160 50.1 V 74.0 -23.9 PK 349 1.9 RB 1 MHz;VB 3 MHz;Pk e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission above 1 GHz, the limit is based on an average measurement.										
e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission ab	e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission ab	e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission ab	e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission ab	e 1: Above 1 GHz, the limit is based on an average measurement. In addition, the peak reading of any emission ab										

Client:	Ubiquiti Networks	Job Number:	J83026
Madalı	AirCam Dome	T-Log Number:	T84420
wouer.	All Calli Donie	Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Standard:	FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22	Class:	А

Radiated Emissions (Free-Space)

(Elliott Laboratories Fremont Facility, Chamber Configured for Free-Space Measurements)

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 8/26/2011 Test Engineer: Peter Sales Test Location: Fremont Chamber #3 Config. Used: 1 Config Change: None EUT Voltage: 230V/50Hz

General Test Configuration

Anechoic material was placed on the floor between the EUT and the measurement antenna and behind the EUT to ensure that the test site complies with the requirements of CISPR 16 for measurements of radiated field strength above 1GHz in a free-space environment. The EUT and any local support equipment were located on the turntable for radiated emissions testing. Any remote support equipment was located outside the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

The test was performed at a test distance of 3 meters.

Ambient Conditions:

Temperature:	23 °C
Rel. Humidity:	38 %

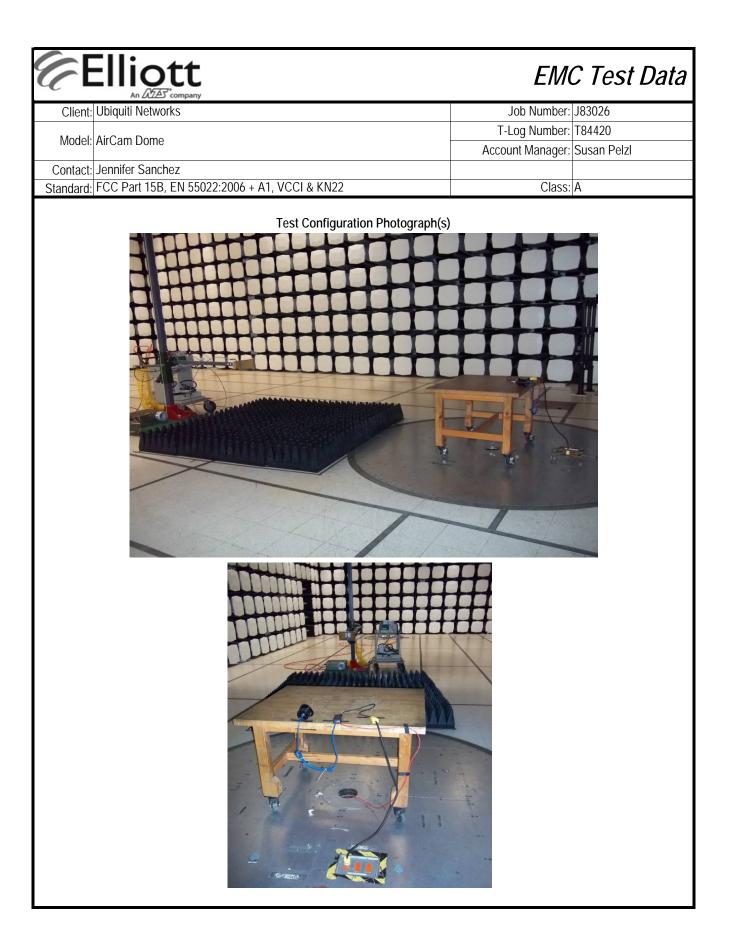
Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	Free Space Radiated Emissions	Class B	Dace	43.3dBµV/m @ 1055.6MHz
I	1 - 2 GHz, Preliminary	CIASS D	Pass	(-6.7dB)
ſ	Free Space Radiated Emissions	Class B	Daaa	43.3dBµV/m @ 1055.6MHz
Z	1 - 2 GHz, Maximized	CIASS D	Pass	(-6.7dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard


No deviations were made from the requirements of the standard.

Client:Ubiquiti NetworksJob Number:J830Model:AirCam DomeT-Log Number:T844Account Manager:SusaContact:Jennifer SanchezImage:Standard:FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22Class:un #1:Preliminary Readings (1 - 2 GHz, EN 55022)	20
Model: AirCam Dome Contact: Jennifer Sanchez Standard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A un #1: Preliminary Readings (1 - 2 GHz, EN 55022) 70.0	
Standard: FCC Part 15B, EN 55022:2006 + A1, VCCI & KN22 Class: A un #1: Preliminary Readings (1 - 2 GHz, EN 55022) 70.0 - 60	
un #1: Preliminary Readings (1 - 2 GHz, EN 55022)	
70.0-	
(¹ / ₂) 50.0 - ² / ₂) ² / ₂ ²	Jun 1
Frequency (MHz) Frequency Range Test Distance Limit Distance Extrapolation F 1000 - 2000 MHz 3 3 0.0	actor
reliminary peak readings captured during pre-scan (peak readings vs. average limit)	
requency Level Pol Class B Detector Azimuth Height Comments	
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters	
200.130 47.7 V 50.0 -2.3 Peak 91 1.0 747.490 47.0 V 50.0 -3.0 Peak 240 1.0 999.990 45.6 V 50.0 -4.4 Peak 148 1.0	
747.490 47.0 V 50.0 -3.0 Peak 240 1.0	

Client:	Ubiquiti Netv	vorks						Job Number:	J83026
							T·	Log Number:	T84420
Model:	AirCam Dom	ne						unt Manager:	
Contact:	Jennifer San	ichez							
Standard:	FCC Part 15	B, EN 550	22:2006 + A	1, VCCI & KI	V22			Class:	А
un #1: Pr	eliminary Re	adings (1	- 2 GHz, EN	55022) (cor	ntinue)				
) ook ond o	vorago roadi	nac (inclu	dina mavim	ization of t	urntable azim	with and an	onno hoigh	, +)	
Frequency	Level	Pol	<u> </u>	ss B	Irntable azim Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	oomments	
1055.550	43.3	Н	50.0	-6.7	AVG	67	1.0	RB 1 MHz;V	′B 10 Hz;Pk
1600.160	43.0	V	50.0	-7.0	AVG	191	1.0	RB 1 MHz;V	'B 10 Hz;Pk
1350.020	42.9	V	50.0	-7.1	AVG	349	1.0	RB 1 MHz;V	'B 10 Hz;Pk
1200.190	42.4	V	50.0	-7.6	AVG	91	1.0	RB 1 MHz;V	′B 10 Hz;Pk
2000.080	39.8	V	50.0	-10.2	AVG	148	1.0	RB 1 MHz;V	'B 10 Hz;Pk
1349.530	57.9	V	70.0	-12.1	PK	349	1.0	RB 1 MHz;V	'B 3 MHz;Pk
1749.090	36.7	V	50.0	-13.3	AVG	241	1.0	RB 1 MHz;V	′B 10 Hz;Pk
1199.850	54.4	V	70.0	-15.6	PK	91	1.0	RB 1 MHz;V	'B 3 MHz;Pk
1055.280	50.2	Н	70.0	-19.8	PK	67	1.0	RB 1 MHz;V	'B 3 MHz;Pk
2000.110	49.0	V	70.0	-21.0	PK	148	1.0	RB 1 MHz;V	'B 3 MHz;Pk
1600.270	49.0	V	70.0	-21.0	PK	191	1.0	RB 1 MHz;V	'B 3 MHz;Pk
1749.720	43.8	V	70.0	-26.2	PK	241	1.0	RB 1 MHz;V	'B 3 MHz;Pk
Run #2: Ma	aximized Rea	adings fro	m Run #1 (1	- 2 GHz, EN	l 55022)				
	Free	quency Ra	nge	Test D	istance	Limit D	istance	Extrapolat	ion Factor
			1Hz		3		}	0	

Final Peak and average readings (including maximization of turntable azimuth, antenna height, and manipulation of cable positions)

(g.				/			0. 00.0.0 p	, entre entr
Frequency	Level	Pol	Cla	ss B	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1055.550	43.3	Н	50.0	-6.7	AVG	67	1.0	RB 1 MHz;VB 10 Hz;Pk
1600.160	43.0	V	50.0	-7.0	AVG	191	1.0	RB 1 MHz;VB 10 Hz;Pk
1350.020	42.9	V	50.0	-7.1	AVG	349	1.0	RB 1 MHz;VB 10 Hz;Pk
1200.190	42.4	V	50.0	-7.6	AVG	91	1.0	RB 1 MHz;VB 10 Hz;Pk
1349.530	57.9	V	70.0	-12.1	PK	349	1.0	RB 1 MHz;VB 3 MHz;Pk
1199.850	54.4	V	70.0	-15.6	PK	91	1.0	RB 1 MHz;VB 3 MHz;Pk
1055.280	50.2	Н	70.0	-19.8	PK	67	1.0	RB 1 MHz;VB 3 MHz;Pk
1600.270	49.0	V	70.0	-21.0	PK	191	1.0	RB 1 MHz;VB 3 MHz;Pk
1600.270	49.0	V	70.0	-21.0	PK	191	1.0	RB 1 MHz;VB 3 MHz;Pk

	An 2743 Client	Ubiquiti Networks			Inh N	lumher [.]	J83026
		AirCam Dome	•				T84420
							Susan Pelzl
	Contact:	Jennifer Sanchez				5	
Imm	unity Standard(s):	EN 55024:1998 w	v/ A1:2001 & A2:20	03 & KN 24	Enviro	onment:	-
		Ele	ctrostatic Di	scharge (EN	61000-4-2)		
	pecific Details Objective: The obje listed abo		ession is to perforn	n final qualification	testing of the EUT	with resp	pect to the specification
Test E	e of Test: 9/1/2011 Engineer: Luis Cab Location: Fremont	rera	Config. Used: Config Change: EUT Voltage:	None			
For table coupling	plane, 80 cm abov	e EUT and all loca					ayer above a horizontal 0 cm above a ground
Unless o applied t	therwise stated, te o coupling planes a	and conductive su	rfaces of the EUT.	Air discharges w		on-cond	Contact discharges were uctive surfaces of the EU ng equipment.
Unless o applied t The VCF The dete	therwise stated, te o coupling planes a was located on th ermination as to the	and conductive su le table top for tab	rfaces of the EUT. le top devices and	Air discharges we 80cm above the g	ere applied to any n	on-cond r standir	uctive surfaces of the EU ng equipment.
Unless o applied t The VCF The dete declarati	therwise stated, te o coupling planes a was located on th ermination as to the	and conductive su le table top for tab e test point being a	rfaces of the EUT. le top devices and a part of a conducti Temperature: Relative Humidity:	Air discharges we 80cm above the g ve or non-conduct 24.3 °C 38 %	ere applied to any n pround plane for floo	on-cond r standir	uctive surfaces of the EU ng equipment.
Jnless o applied t The VCF The dete declarati	therwise stated, te o coupling planes a was located on th ermination as to the on.	and conductive su le table top for tab e test point being a	rfaces of the EUT. le top devices and a part of a conducti Temperature:	Air discharges we 80cm above the g ve or non-conduct 24.3 °C 38 %	ere applied to any n pround plane for floo	on-cond r standir	uctive surfaces of the EU ng equipment.
Jnless o applied t The VCF The dete declarati	therwise stated, te o coupling planes a was located on th ermination as to the on.	and conductive su le table top for tab e test point being a	rfaces of the EUT. le top devices and a part of a conducti Temperature: Relative Humidity: Pressure:	Air discharges we 80cm above the g ve or non-conduct 24.3 °C 38 %	ere applied to any n pround plane for floo	on-cond r standir	uctive surfaces of the EU ng equipment.
Jnless o applied t Fhe VCF fhe dete declarati Ambie	therwise stated, te o coupling planes a o was located on the ormination as to the on. nt Conditions:	and conductive su le table top for tab e test point being a - Electrostatic Test	rfaces of the EUT. le top devices and a part of a conducti Temperature: Relative Humidity: Pressure: Discharges Level	Air discharges we 80cm above the g ve or non-conduct 24.3 °C 38 % 1009 mb Performar	ere applied to any n round plane for floo ive surface was bas	on-cond r standir	uctive surfaces of the EU ng equipment. e manufacturer's
Jnless o applied t The VCF The dete declarati	therwise stated, te o coupling planes a o was located on the ermination as to the on. nt Conditions:	and conductive su le table top for tab e test point being a - Electrostatic Test Required	rfaces of the EUT. le top devices and a part of a conducti Temperature: Relative Humidity: Pressure: Discharges Level Applied	Air discharges we 80cm above the g ve or non-conduct 24.3 °C 38 % 1009 mb	ere applied to any n round plane for floo ive surface was bas	on-cond r standir	uctive surfaces of the EU ng equipment.
applied t The VCF The dete declarati Ambie Summ	therwise stated, te o coupling planes a o was located on the ormination as to the on. nt Conditions:	and conductive su le table top for tab e test point being a - Electrostatic Test	rfaces of the EUT. le top devices and a part of a conducti Temperature: Relative Humidity: Pressure: Discharges Level	Air discharges we 80cm above the g ve or non-conduct 24.3 °C 38 % 1009 mb Performar	ere applied to any n round plane for floo ive surface was bas	on-cond r standir	uctive surfaces of the ng equipment. e manufacturer's
Unless o applied t The VCF The dete declarati Ambie	therwise stated, te o coupling planes a o was located on the ormination as to the on. nt Conditions:	and conductive su le table top for tab e test point being a - Electrostatic Test	rfaces of the EUT. le top devices and a part of a conducti Temperature: Relative Humidity: Pressure: Discharges Level	Air discharges we 80cm above the g ve or non-conduct 24.3 °C 38 % 1009 mb Performar	ere applied to any n round plane for floo ive surface was bas	on-cond r standir	uctive surfaces of the El ng equipment. e manufacturer's

An AZAS	tt						<u> </u>	<u>MC 7</u>	<u>esi</u>
	Ubiquiti Networks						Number:		
Model:	AirCam Dome				L		Number:		
-					1	Account N	Nanager:	Susan P	elzl
	Jennifer Sanchez								
Immunity Standard(s):	EN 55024:1998 w/ A1:200	1 & A2:20	03 & KN	24		Envi	ronment:	-	
Run #1: Electrostatic Disc	harge								
Indirect Di	scharges		Positive	Polarity			Negative	e Polarity	
(To Couplir	ig Planes)		(k	V)			(k	(V)	
0		Lovel 1	Lovel 2	Lovel 2		Lovel 1	Level 2	Lovel 2	Level 4
Con		Level 1 2	Level 2 4	Level 3 6	Level 4 8	Level 1 2	Level Z	Level 3 6	Level 4
Mo Vertical Coupling Plane (VC				0	0			0	0
Front, rear, left and right side		X, Note 2	X, Note 2			X, Note 2	X, Note 2		
Horizontal Coupling Plane (X,	X,			X,	X,		
he front, rear, left and right		Note 2	Note 2			Note 2	Note 2		
no nong roar, fort and right		11010 2							
Direct Dis	charges		Positive	Polarity			Negative	e Polarity	
(To the			(k					.V)	
Con	act	Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4
Мо		2	4	6	8	2	4	6	8
POE Shield Port		Х,	Χ,	-	-	Х,	Χ,	-	
		Note 2	Note 2			Note 2	Note 2		
AN shield Port		Х,	Х,			Х,	Х,		
		Note 2	Note 2			Note 2	Note 2		
Air Disc	harge	Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4
Mo		2	4	8	15	2	4	8	15
Clear dome seam X2		ND	ND	ND		ND	ND	ND	
Seam Between Installation	ixture and Camera	ND	ND	ND		ND	ND	ND	
housing									
AC Cable Boot		ND	ND	ND		ND	ND	ND	
POE Power active LED		ND	ND	ND		ND	ND	ND	
POE Injector seam x4		ND	ND	ND		ND	ND	ND	
	at the unit continued to opeing "EUT operation during						ate as ou	itlined in t	est confiç
Note: ND: No discharge	was possible due to the lac Coupling Plane. VCP: Vertic			ath to gro	ound from	the test p	point.		
HCP: Horizontal C									
	and the street of the street o			-					

CElliott An DE Company	EMC Test Data
Client: Ubiquiti Networks	Job Number: J83026
Model: AirCam Dome	T-Log Number: T84420
Outlet having Country	Account Manager: Susan Pelzl
Contact: Jennifer Sanchez Immunity Standard(s): EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment: -
	Livioninent.
Test Configuration Photograp	ph(s)

An ZAZA) company		
Client:	Ubiquiti Networks	Job Number:	J83026
Model:	AirCam Dome	T-Log Number:	T84420
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Immunity Standard(s):	EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment:	-

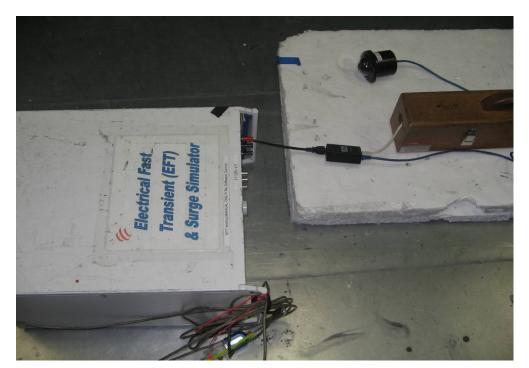
		tt				EM	C Test Data
		Ubiquiti Networks			Job Nur		
	Model:	AirCam Dome			T-Log Nur		
	Contact:	Jennifer Sanchez			Account Man	ager: c	Susan Peizi
Imm			/ A1:2001 & A2:200	03 & KN 24	Environment: -		
		R	adiated Imm	unity (EN 61	1000-4-3)		
-	pecific Details Dijective: The obje listed ab		ession is to perform	final qualificatior	testing of the EUT wit	n respe	ect to the specification
Test E	e of Test: 8/31/201 Engineer: Luis Cab Location: Fremont	orera	Config. Used: Config Change: EUT Voltage:	None			
hrough f	ferrite clamps at th ferrite clamps at th nt Conditions:	e exit point from th	e chamber.	oport equipment v	vas routed along the flo	or and,	, where possible, passed
-indie	nt Conditions:	-	perature:21Humidity:40				
	ary of Results	Rel. H	Humidity: 40 unity	%			
Summ		Rel. F Radiated Imm Test	Humidity: 40 unity Level	% Performa	nce Criteria Met / Result		Comments
Summ Run #	ary of Results	Rel. H Radiated Imm Test Required	Humidity: 40 unity Level Applied	%	nce Criteria Met / Result		Comments
Summa Run #	ary of Results	Rel. F Radiated Imm Test	Humidity: 40 unity Level	% Performa			Comments

Elliott EMC Test Data Client: Ubiquiti Networks Job Number: J83026 Model: AirCam Dome T-Log Number: T84420 Account Manager: Susan Pelzl Contact: Jennifer Sanchez Immunity Standard(s): EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24 Environment: Run #1: Radiated Immunity, 80-1000 MHz (EN61000-4-3) Frequency: 80-1000 MHz Step Size: 1 % Dwell time: 2874 ms Field Uniformity: 1.5m x 1.5m Test Distance: 2m Modulation Details Modulating Frequency: 1 kHz Modulation: AM Depth / Deviation: 80% Left Side Frequency Level Front Rear Right Тор Bottom Range (MHz) V/m Vert. Horiz. Vert. Horiz. Vert. Horiz. Vert. Horiz. Vert. Horiz. Vert. Horiz. 80-1000 N/A N/A N/A N/A 3 Х Х Х Х Х Х Х Х EN 55024 Select 3 Х Х Х Х Х Х Х Х N/A N/A N/A N/A Frequencies (Note 1) Test files used for this run: The following calibration files from U:\EMC Stuff\RI Playback Files FT\CH6\Current\80-1000 MHz (April 2010)\03 Vm\ were used: Position A 1.55m 80 MHz - 1000 MHz H 3Vm.crf Position A 1.55m 80 MHz - 1000 MHz V 3Vm.crf Note: An "X" indicates that the unit continued to operate as intended. The EUT continued to operate as outlined in test configuration #1 under the heading "EUT operation during immunity tests". No errors were obsreved Note 1: As the EUT was telecommunications terminal equipment, functional checks of the system were made at the selected frequencies detailed in EN 55024 in accordance with Annex A of the standard. The selected frequencies are 80, 120, 160, 230, 434, 460, 600, 863 and 900 MHz.

	EMC Test Dat
An ATAT company	
Client: Ubiquiti Networks	Job Number: J83026
Model: AirCam Dome	T-Log Number: T84420 Account Manager: Susan Pelzl
Contact: Jennifer Sanchez	
Immunity Standard(s): EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment: -
Test Configuration Photograph	

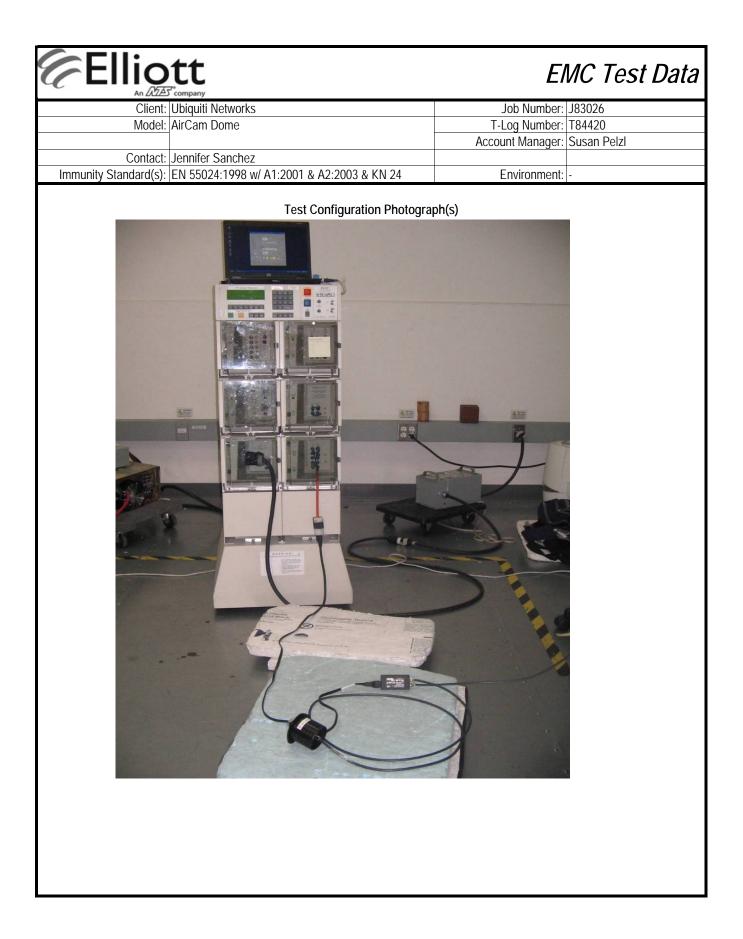
Elliott

	company		
Client:	Ubiquiti Networks	Job Number:	J83026
Model:	AirCam Dome	T-Log Number:	T84420
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Immunity Standard(s):	EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment:	-


	Client	Ubiquiti Networks			Inh Nu	mber: J83026	
		AirCam Dome				mber: T84420	
						ager: Susan Pelzl	
		Jennifer Sanchez					
Imm	unity Standard(s):	EN 55024:1998 w	// A1:2001 & A2:20	003 & KN 24	Environ	ment: -	
	pecific Details			·	T/B) (EN 61000	·	ion
Ĺ	Dijective: The objective: The objective: I he objective:		ession is to perforn	n final qualification	i testing of the EUT wit	h respect to the specificati	ion
Date	e of Test: 9/1/2011	8:22	Config. Used:	#1			
Test I	Engineer: Luis Cat Location: Fremont al Test Configu	EMC Lab #1	Config Change: EUT Voltage:				
Test I Genera he EUT nd the o	Location: Fremont al Test Configu [system was locat coupling/decouplin	EMC Lab #1 uration red 10 cm above a g network. Interfe	EUT Voltage: ground reference rence was coupled	220V/60Hz plane. A 0.5m lon d onto the cables c		d between the EUT's power identified in the test data tate tates the test data tate tates the test data takes takes the test data takes takes the test data takes take takes take takes take	•
Test I Genera The EUT nd the o sing the	Location: Fremont al Test Configu [system was locat coupling/decouplin	EMC Lab #1 uration red 10 cm above a g network. Interfe , with a maximum	EUT Voltage: ground reference rence was coupled	220V/60Hz plane. A 0.5m lon d onto the cables c	connected to the ports	identified in the test data ta	•
Test I Genera he EUT nd the o sing the	Location: Fremont al Test Configu F system was locat coupling/decouplin e capacitive trench nt Conditions: Tem	EMC Lab #1 uration red 10 cm above a ig network. Interfe , with a maximum perature: 23	EUT Voltage: ground reference rence was coupled	220V/60Hz plane. A 0.5m lon d onto the cables c	connected to the ports	identified in the test data ta	•
Test I Genera he EUT nd the c sing the	Location: Fremont al Test Configu F system was locat coupling/decouplin e capacitive trench nt Conditions: Tem	EMC Lab #1 uration red 10 cm above a ig network. Interfe , with a maximum perature: 23	EUT Voltage: ground reference rence was coupled length of 0.5m of c	220V/60Hz plane. A 0.5m lon d onto the cables c	connected to the ports	identified in the test data ta	•
Test I Genera he EUT nd the c sing the mbie	Location: Fremont al Test Configu I system was locat coupling/decouplin e capacitive trench nt Conditions: Tem Rel. I ary of Results	EMC Lab #1 uration red 10 cm above a g network. Interfe , with a maximum perature: 23 Humidity: 41 Test	EUT Voltage: ground reference rence was coupled length of 0.5m of c	220V/60Hz plane. A 0.5m lon d onto the cables of cable between the Performan	nce Criteria	identified in the test data ta	•
Test I Genera he EUT nd the c sing the mbie	Location: Fremont al Test Configu F system was locat coupling/decouplin e capacitive trench nt Conditions: Tem Rel. I ary of Results Port	EMC Lab #1 uration red 10 cm above a g network. Interfe , with a maximum perature: 23 Humidity: 41 Test Required	EUT Voltage: ground reference rence was coupled length of 0.5m of c °C %	220V/60Hz plane. A 0.5m lon d onto the cables of cable between the Performan Required	nce Criteria Met / Result	identified in the test data ta	•
Test I Genera he EUT nd the c sing the sing the mbie	Location: Fremont al Test Configu F system was locat coupling/decouplin e capacitive trench nt Conditions: Tem Rel. I ary of Results Port AC Power	EMC Lab #1 Jration red 10 cm above a Ig network. Interfe , with a maximum perature: 23 Humidity: 41 Test Required ± 1 kV	EUT Voltage: ground reference rence was coupled length of 0.5m of c °C % Level Applied ± 1 kV	220V/60Hz plane. A 0.5m lon d onto the cables of cable between the Performan	nce Criteria	identified in the test data ta	•
Test I Genera he EUT nd the o sing the sing the Mobie Run # 1	Location: Fremont al Test Configu F system was locat coupling/decouplin e capacitive trench nt Conditions: Tem Rel. I ary of Results Port	EMC Lab #1 uration red 10 cm above a ig network. Interfe , with a maximum perature: 23 Humidity: 41 Test Required ± 1 kV During Testing	EUT Voltage: ground reference rence was coupled length of 0.5m of c °C % Level Applied ± 1 kV	220V/60Hz plane. A 0.5m lon d onto the cables of cable between the Performan Required	nce Criteria Met / Result	identified in the test data ta	•

C L								El	MC T	Test l	Data
	Client: Ubiquit						loh	Number:	183026		
	Model: AirCan							Number:			
		Dome							Susan P	ارام	
	Contact: Jennife	er Sanchez						nanayor.	Jusuitt		
Immunity	Standard(s): EN 550		1 & A2·20	03 & KN	24		Fnvi	ronment:	-		
ininianity		24.1770 W/7(1.200	1 0 112.20		27			onnent.			
Run #1: EFT	/B Testing										
	Test Parameters										
	Waveforn	n: 5 ns / 50 ns			Burs	st Period:	300 ms				
	Repetition Frequency	/: 5 kHz (2.5 kHz @	2 4 kV)		Bur	st Width:	15 ms				
				-							
	Applied			Positive	Polarity			Negative	e Polarity		
	Location			(k	V)			(k	V)		
	Power Line		Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4	
	AC Power Port	s)	0.5	1.0	2.0	4.0	0.5	1.0	2.0	4.0	
Lir	ne + Neutral + Protect	ive Earth	Х	Х			Х	Х			
	(3-Wire AC Power	Port)									
	I/O		Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4	
	Port		0.25	0.5	1.0	2.0	0.25	0.5	1.0	2.0	
	RJ45 LAN		Note 1	Note 1			Note 1	Note 1			
	RJ45 POE (injector	Side)	Note 1	Note 1			Note 1	Note 1			
	RJ45 POE (camera	Side)	Note 1	Note 1			Note 1	Note 1			
#1 u	X" indicates that the inder the heading "El nt declared that these	JT operation during	immunity	tests". N				ate as ou	tlined in t	est config	uration
Note 2: -											
Note 2: -	interface ports were	not tested:									
Note 2: -	interface ports were Port(s)					Reason					
Note 2: -		not tested: The ports are intereguires the test t				ess than 3	3m in lenç		e produc	standard	only

CElliott	EMC Test Data
Client: Ubiquiti Networks Model: AirCam Dome	Job Number: J83026 T-Log Number: T84420 Account Manager: Susan Pelzl
Contact: Jennifer Sanchez Immunity Standard(s): EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment: -
Test Configuration Photograph	n(s)


-

Model: AirCam Dome T-Log Number: T84420 Contact: Jennifer Sanchez Account Manager: Susan Pelzi Immunity Standard(s): EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24 Environment: - Surge (EN 61000-4-5) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 9/2/2011 11:20 Config. Used: 2 Config. Used: 2 Test Engineer: Hong Stenerson Config Change: None Test Location: Fremont EMC Lab #2 EUT Voltage: 220V/60Hz General Test Configuration The EUT and all local support equipment were located on a non-conductive bench. Ambient Conditions: Test Level Performance Criteria Run # Port Test Level Performance Criteria Comments Run # Port Test Level Performance Criteria Comments 1 AC Prover ± 2 kV CM B A/ Pass		Client:	Ubiquiti Networks			Job	Number:	J83026
Contact: Jennifer Sanchez Immunity Standard(s): EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24 Environment: - Surge (EN 61000-4-5) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 9/2/2011 11:20 Config: Used: 2 Test Engineer: Hong Stenerson Config Change: None Test Location: Fremont EMC Lab #2 EUT Voltage: 220V/60Hz General Test Configuration The EUT and all local support equipment were located on a non-conductive bench. Ambient Conditions: Temperature: 24 °C Rel. Humidity: 44 % Summary of Results Run # Port Test Level Performance Criteria Comments 1 AC Power ± 2 kV CM B A/Pass		Model:	AirCam Dome			- · · · ·		
Immunity Standard(s): EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24 Environment: - Surge (EN 61000-4-5) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 9/2/2011 11:20 Config. Used: 2 Test Engineer: Hong Stenerson Config Change: None Test Location: Fremont EMC Lab #2 EUT Voltage: 220V/60Hz General Test Configuration The EUT and all local support equipment were located on a non-conductive bench. Ambient Conditions: Temperature: 24 °C Rel. Humidity: 44 % Summary of Results Run # Port Test Level Applied Performance Criteria Comments 1 AC Power ± 2 kV CM ± 2 kV CM B A/ Pass		Cantaat	lonnifor Conchor			Account N	lanager:	Susan Pelzl
Surge (EN 61000-4-5) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 9/2/2011 11:20 Config. Used: 2 Test Engineer: Hong Stenerson Config Change: None Test Location: Fremont EMC Lab #2 EUT Voltage: 220V/60Hz General Test Configuration The EUT and all local support equipment were located on a non-conductive bench. Ambient Conditions: Temperature: 24 °C Rel. Humidity: 44 % Summary of Results Run # Port Test Level Performance Criteria Comments 1 AC Power ± 2 kV CM ± 2 kV CM B A/ Pass	Imm				003 & KN 24	Envir	conment:	-
Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 9/2/2011 11:20 Config. Used: 2 Test Engineer: Hong Stenerson Config Change: None Test Engineer: Hong Stenerson Config Change: None Test Location: Fremont EMC Lab #2 EUT Voltage: 220V/60Hz General Test Configuration Temperature: 24 °C Rel. Humidity: 44 % Summary of Results Run # Port Test Level Performance Criteria Comments 1 AC Power ± 2 kV CM B A/Pass								L
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 9/2/2011 11:20 Config. Used: 2 Test Engineer: Hong Stenerson Config Change: None Test Location: Fremont EMC Lab #2 EUT Voltage: 220V/60Hz General Test Configuration Fremont equipment were located on a non-conductive bench. Ambient Conditions: Temperature: 24 °C Rel. Humidity: 44 % Summary of Results Test Level Performance Criteria Run # Port Test Level Performance Criteria 1 AC Power ± 2 kV CM ± 2 kV CM B				Surge	(EN 61000-4	-5)		
Iisted above. Iisted above. Date of Test: 9/2/2011 11:20 Config. Used: 2 Test Engineer: Hong Stenerson Config Change: None Test Location: Fremont EMC Lab #2 EUT Voltage: 220V/60Hz General Test Configuration The EUT and all local support equipment were located on a non-conductive bench. Ambient Conditions: Temperature: 24 °C Rel. Humidity: 44 % Summary of Results Run # Port Test Level Required Applied Required Met / Result Comments	Test S	pecific Details						
Test Engineer: Hong Stenerson Config Change: None Test Location: Fremont EMC Lab #2 EUT Voltage: 220V/60Hz General Test Configuration EUT and all local support equipment were located on a non-conductive bench. Ambient Conditions: Temperature: 24 °C Rel. Humidity: 44 % Summary of Results Test Level Performance Criteria Comments 1 AC Power ± 2 kV CM ± 2 kV CM B A/ Pass	C			ession is to perforn	n final qualification	testing of the EUT	with resp	pect to the specification
Test Location: Fremont EMC Lab #2 EUT Voltage: 220V/60Hz General Test Configuration The EUT and all local support equipment were located on a non-conductive bench. Ambient Conditions: Temperature: 24 °C Rel. Humidity: 44 % Summary of Results Test Level Run # Port Test Level Required Applied Required Applied Required Met / Result 1 AC Power ± 2 kV CM B	Date	e of Test: 9/2/2011	11:20					
General Test Configuration The EUT and all local support equipment were located on a non-conductive bench. Ambient Conditions: Temperature: 24 °C Rel. Humidity: 44 % Summary of Results Run # Port Test Level Required Applied Required Applied Required Met / Result								
The EUT and all local support equipment were located on a non-conductive bench. Ambient Conditions: Temperature: 24 °C Rel. Humidity: Summary of Results Run # Port Test Level Required Applied Required Applied Required Met / Result 1 AC Power ± 2 kV CM B	l est l	Location: Fremont	EMC Lab #2	EUT Voltage:	220V/60Hz			
Ambient Conditions: Temperature: 24 °C Rel. Humidity: 44 % Summary of Results Run # Port Test Level Performance Criteria Comments 1 AC Power ± 2 kV CM B A/ Pass	Genera	al Test Configu	Iration					
Rel. Humidity: 44 % Summary of Results Run # Port Test Level Applied Performance Criteria Required Comments 1 AC Power ± 2 kV CM B A/ Pass	The EUT	and all local supp	ort equipment wer	e located on a nor	n-conductive bench	1.		
Rel. Humidity: 44 % Summary of Results Run # Port Test Level Applied Performance Criteria Required Comments 1 AC Power ± 2 kV CM B A/ Pass	A la !	nt Conditions.	Tem	nerature [,] 2/	°C			
Summary of Results Run # Port Test Level Performance Criteria Required Applied Required Met / Result 1 AC Power ± 2 kV CM B A/ Pass	nmnia	III CONULIONS.		•				
Run # Port Test Level Required Performance Criteria Required Comments 1 AC Power ± 2 kV CM B A/ Pass	Ampie		Kel I					
Run # Point Required Applied Required Met / Result 1 AC Power ± 2 kV CM B A/ Pass			Kei. I	3				
1 $\Delta C Power \pm 2 \text{ kV CM} \pm 2 \text{ kV CM} B \Delta / Pass$		ary of Results		-		0.11.1		
	Summa	j	Test	Level				Comments
	Summa Run # 1	Port AC Power	Test Required ± 2 kV CM ± 1 kV DM	Level Applied ± 2 kV CM ± 1 kV DM	Required	Met / Result		Comments
Modifications Made During Testing	Summa Run # 1 Modific	Port AC Power cations Made [Test Required ± 2 kV CM ± 1 kV DM During Testing	Level Applied ± 2 kV CM ± 1 kV DM	Required	Met / Result		Comments
No modifications were made to the EUT during testing	Summa Run # 1 Modific	Port AC Power cations Made [Test Required ± 2 kV CM ± 1 kV DM During Testing	Level Applied ± 2 kV CM ± 1 kV DM	Required	Met / Result		Comments
	Summa Run # 1 Modifia	Port AC Power cations Made I fications were mad	Test Required ± 2 kV CM ± 1 kV DM During Testing le to the EUT durir	Level Applied ± 2 kV CM ± 1 kV DM	Required	Met / Result		Comments
No modifications were made to the EUT during testing	Summa Run # 1 Modifia No modifi	Port AC Power cations Made I fications were mad ions From The	Test Required ± 2 kV CM ± 1 kV DM Ouring Testing le to the EUT durir Standard	Level Applied ± 2 kV CM ± 1 kV DM	Required B	Met / Result		Comments

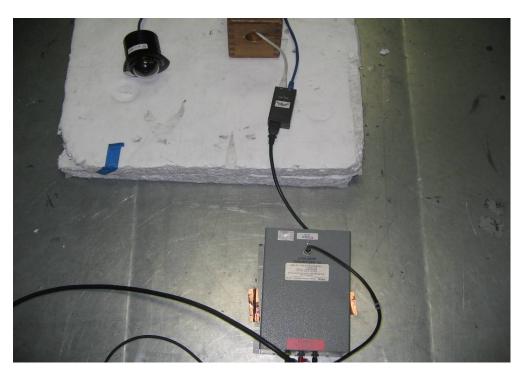
Elliott

					Job	Number:	J83026	
Model: AirCam Dome					T-Log	Number:	T84420	
					Account N	Manager:	: Susan Pelzl	
Contact: Jennifer Sanchez								
Immunity Standard(s): EN 55024:1998 w/ A1:20	01 & A2:20	03 & KN	24		Envi	ronment:	-	
in #1: Surge Immunity, Power Line C Power Port								
Test P	arameters							
Waveform: 1.2/50µS								
Impedance: 12 Ohms (Comn	non Mode)	, 2 Ohms	(Differen	tial Mode)			
Applied		Docitivo	Polarity			Nogative	e Polarity	
Location		rusilive (k				weyalive (k	1	
			·					
Power	Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4
Line	0.5	1.0	2.0	4.0	0.5	1.0	2.0	4.0
Line to Line (Differential Mode)								
0°	Х	Х			Х	Х		
90°	Х	Х			Х	Х		
180°	Х	Х			Х	Х		
270°	Х	Х			Х	Х		
Line to PE (Common Mode)								
0°	Х	Х	Х		Х	Х	Х	
90°	Х	Х	Х		Х	Х	Х	
180°	Х	Х	Х		Х	Х	Х	
270°	Х	Х	Х		Х	Х	Х	
Neutral to PE (Common Mode)								
	Х	Х	Х		Х	Х	Х	
0°		Х	Х	-	х	Х	Х	
	Х	· · · ·						
0°	X	Х	Х		Х	Х	Х	

4		company					IC Test Data
		Ubiquiti Networks				mber: J8	
	Model:	AirCam Dome			T-Log Nur		
	Contact	Jennifer Sanchez			Account Man	ager: Si	usan Pelzi
Imm	unity Standard(s):			103 & KN 24	Environi	mont· -	
		LN 33024.1770 W	////.2001 &//2.20		LIWIOII	incint.	
		Сс	onducted Im	munity (EN	61000-4-6)		
	pecific Details	ative of this test as	ocion io to norform	e final qualification	tooting of the FUT wit	b r oon o r	at to the one diffection
U	listed ab		ession is to perform	n final qualification	testing of the EUT wit	n respec	ct to the specification
Date	e of Test: 9/1/2011	8:22	Config. Used:				
	Engineer: Luis Cab		Config Change:				
Test L	Location: Fremont	EMC Lab #1	EUT Voltage:	220V/60Hz			
` ~~~~~	al Teat Confirm						
	al Test Configu					c	All being
ne EU I	and all local supp	ort equipment wer	e placed on an ins	sulating support it	cm above a ground re	erence	blane. All interface
			•		-		-
	•	e EUT (for equipme	ent comprising sev	veral units) and to	local support equipmer	nt were a	also placed on the
nsulating	g support. All inter	e EUT (for equipme	ent comprising sev	veral units) and to	local support equipmer	nt were a	-
nsulating	•	e EUT (for equipme	ent comprising sev	veral units) and to	local support equipmer	nt were a	also placed on the
nsulating pround re	g support. All inter eference plane.	e EUT (for equipme face cabling betwe	ent comprising sev een the EUT and th	veral units) and to the coupling and de	local support equipmer	nt were a	also placed on the
nsulating pround re	g support. All inter	e EUT (for equipme face cabling betwe Temj	ent comprising sev een the EUT and th perature: 22	veral units) and to ne coupling and do °C	local support equipmer	nt were a	also placed on the
nsulating pround re	g support. All inter eference plane.	e EUT (for equipme face cabling betwe Temj	ent comprising sev een the EUT and th	veral units) and to ne coupling and do °C	local support equipmer	nt were a	also placed on the
nsulating pround re Ambier	g support. All inter eference plane. nt Conditions:	e EUT (for equipme face cabling betwe Temp Rel. F	ent comprising sev een the EUT and th perature: 22 Humidity: 40	veral units) and to ne coupling and do °C	local support equipmer	nt were a	also placed on the
nsulating pround re Ambier	g support. All inter eference plane. nt Conditions: ary of Results	e EUT (for equipme face cabling betwe Temp Rel. H - Conducted Ir	ent comprising sev een the EUT and th perature: 22 Humidity: 40	veral units) and to the coupling and do °C %	local support equipmer	nt were a	also placed on the ted 3 to 5 cm above the
nsulating pround re Ambier	g support. All inter eference plane. nt Conditions:	e EUT (for equipme face cabling betwe Temp Rel. F - Conducted Ir Test Required	ent comprising sev een the EUT and th perature: 22 Humidity: 40 mmunity Level Applied	veral units) and to the coupling and do °C %	local support equipmer ecoupling network(s) w	nt were a	also placed on the
nsulating round re Ambier	g support. All inter eference plane. nt Conditions: ary of Results	e EUT (for equipme face cabling betwe Temp Rel. H - Conducted Ir Test	ent comprising sev een the EUT and th perature: 22 Humidity: 40 mmunity Level	veral units) and to the coupling and do °C % Performa	local support equipmer ecoupling network(s) w nce Criteria Met / Result	nt were a	also placed on the ted 3 to 5 cm above the
isulating round re Ambiei	g support. All inter eference plane. nt Conditions: ary of Results	e EUT (for equipme face cabling betwe Temp Rel. F - Conducted Ir Test Required	ent comprising sev een the EUT and the perature: 22 Humidity: 40 mmunity Level Applied 0.15-80MHz 1kHz 80% AM	veral units) and to the coupling and do °C % Performa	local support equipmer ecoupling network(s) w	nt were a	also placed on the ted 3 to 5 cm above the
sulating round ro mbie Summa Run #	g support. All inter eference plane. nt Conditions: ary of Results Port AC power	e EUT (for equipme face cabling betwee Temp Rel. H - Conducted Ir Test Required 0.15-80MHz 1kHz 80% AM 3 Vrms	ent comprising sev een the EUT and the perature: 22 Humidity: 40 mmunity Level 0.15-80MHz 1kHz 80% AM 3 Vrms	Performa Required	local support equipmer ecoupling network(s) w nce Criteria Met / Result	nt were a	also placed on the ted 3 to 5 cm above the
sulating round ro mbien Summa Run #	g support. All inter eference plane. nt Conditions: ary of Results Port	e EUT (for equipme face cabling betwee Temp Rel. H - Conducted Ir Test Required 0.15-80MHz 1kHz 80% AM 3 Vrms	ent comprising sev een the EUT and the perature: 22 Humidity: 40 mmunity Level 0.15-80MHz 1kHz 80% AM 3 Vrms	Performa Required	local support equipmer ecoupling network(s) w nce Criteria Met / Result	nt were a	also placed on the ted 3 to 5 cm above the
sulating round ro mbier umm Run # 1 lodifi	g support. All inter eference plane. nt Conditions: ary of Results Port AC power	E EUT (for equipme face cabling betwee rem Rel. H - Conducted Ir Test Required 0.15-80MHz 1kHz 80% AM 3 Vrms During Testing	ent comprising sev een the EUT and the perature: 22 Humidity: 40 mmunity 40 Mmunity Level Applied 0.15-80MHz 1kHz 80% AM 3 Vrms	Performa Required	local support equipmer ecoupling network(s) w nce Criteria Met / Result	nt were a	also placed on the ted 3 to 5 cm above the
sulating round ro mbien Summa Run # 1 1 1 0 dific o modif	g support. All inter eference plane. nt Conditions: ary of Results Port AC power cations Made I fications were mad	e EUT (for equipme face cabling betwee Temp Rel. H - Conducted Ir Test Required 0.15-80MHz 1kHz 80% AM 3 Vrms During Testing le to the EUT durin	ent comprising sev een the EUT and the perature: 22 Humidity: 40 mmunity 40 Mmunity Level Applied 0.15-80MHz 1kHz 80% AM 3 Vrms	Performa Required	local support equipmer ecoupling network(s) w nce Criteria Met / Result	nt were a	also placed on the ted 3 to 5 cm above the
sulating round ro mbien Summa Run # 1 1 1 0 dific o modif	g support. All inter eference plane. nt Conditions: ary of Results Port AC power Cations Made I	e EUT (for equipme face cabling betwee Temp Rel. H - Conducted Ir Test Required 0.15-80MHz 1kHz 80% AM 3 Vrms During Testing le to the EUT durin	ent comprising sev een the EUT and the perature: 22 Humidity: 40 mmunity 40 Mmunity Level Applied 0.15-80MHz 1kHz 80% AM 3 Vrms	Performa Required	local support equipmer ecoupling network(s) w nce Criteria Met / Result	nt were a	also placed on the ted 3 to 5 cm above the
sulating round ro mbier Summa Run # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	g support. All inter eference plane. nt Conditions: ary of Results Port AC power cations Made I fications were mad	EUT (for equipme face cabling betwe rem Rel. H - Conducted Ir Test Required 0.15-80MHz 1kHz 80% AM 3 Vrms During Testing le to the EUT durin	ent comprising sev een the EUT and the perature: 22 Humidity: 40 mmunity Level Applied 0.15-80MHz 1kHz 80% AM 3 Vrms	Performa Required	local support equipmer ecoupling network(s) w nce Criteria Met / Result	nt were a	also placed on the ted 3 to 5 cm above the
sulating round ro mbier Summa Run # 1 1 1 0 dific o modif	g support. All inter eference plane. nt Conditions: ary of Results Port AC power cations Made I fications were mad ions From The	EUT (for equipme face cabling betwe rem Rel. H - Conducted Ir Test Required 0.15-80MHz 1kHz 80% AM 3 Vrms During Testing le to the EUT durin	ent comprising sev een the EUT and the perature: 22 Humidity: 40 mmunity Level Applied 0.15-80MHz 1kHz 80% AM 3 Vrms	Performa Required	local support equipmer ecoupling network(s) w nce Criteria Met / Result	nt were a	also placed on the ted 3 to 5 cm above the
Ambien Ambien Ambien Ambien Ambien Ambien Run # 1 Aodific Io modifi Deviati	g support. All inter eference plane. nt Conditions: ary of Results Port AC power cations Made I fications were mad ions From The	EUT (for equipme face cabling betwe rem Rel. H - Conducted Ir Test Required 0.15-80MHz 1kHz 80% AM 3 Vrms During Testing le to the EUT durin	ent comprising sev een the EUT and the perature: 22 Humidity: 40 mmunity Level Applied 0.15-80MHz 1kHz 80% AM 3 Vrms	Performa Required	local support equipmer ecoupling network(s) w nce Criteria Met / Result	nt were a	also placed on the ted 3 to 5 cm above the
nsulating round ro Ambien Summa Run # 1 Aodific Io modifi Deviati	g support. All inter eference plane. nt Conditions: ary of Results Port AC power cations Made I fications were mad ions From The	EUT (for equipme face cabling betwe rem Rel. H - Conducted Ir Test Required 0.15-80MHz 1kHz 80% AM 3 Vrms During Testing le to the EUT durin	ent comprising sev een the EUT and the perature: 22 Humidity: 40 mmunity Level Applied 0.15-80MHz 1kHz 80% AM 3 Vrms	Performa Required	local support equipmer ecoupling network(s) w nce Criteria Met / Result	nt were a	also placed on the ted 3 to 5 cm above the
nsulating pround re Ambien Summa Run # 1 1 Modifie No modifi No modifi	g support. All inter eference plane. nt Conditions: ary of Results Port AC power cations Made I fications were mad ions From The	EUT (for equipme face cabling betwe rem Rel. H - Conducted Ir Test Required 0.15-80MHz 1kHz 80% AM 3 Vrms During Testing le to the EUT durin	ent comprising sev een the EUT and the perature: 22 Humidity: 40 mmunity Level Applied 0.15-80MHz 1kHz 80% AM 3 Vrms	Performa Required	local support equipmer ecoupling network(s) w nce Criteria Met / Result	nt were a	also placed on the ted 3 to 5 cm above the
Isulating round ro Ambier Summa Run # 1 Aodific Io modifi Deviati	g support. All inter eference plane. nt Conditions: ary of Results Port AC power cations Made I fications were mad ions From The	EUT (for equipme face cabling betwe rem Rel. H - Conducted Ir Test Required 0.15-80MHz 1kHz 80% AM 3 Vrms During Testing le to the EUT durin	ent comprising sev een the EUT and the perature: 22 Humidity: 40 mmunity Level Applied 0.15-80MHz 1kHz 80% AM 3 Vrms	Performa Required	local support equipmer ecoupling network(s) w nce Criteria Met / Result	nt were a	also placed on the ted 3 to 5 cm above the
nsulating round ro Ambien Summa Run # 1 Aodific Io modifi Deviati	g support. All inter eference plane. nt Conditions: ary of Results Port AC power cations Made I fications were mad ions From The	EUT (for equipme face cabling betwe rem Rel. H - Conducted Ir Test Required 0.15-80MHz 1kHz 80% AM 3 Vrms During Testing le to the EUT durin	ent comprising sev een the EUT and the perature: 22 Humidity: 40 mmunity Level Applied 0.15-80MHz 1kHz 80% AM 3 Vrms	Performa Required	local support equipmer ecoupling network(s) w nce Criteria Met / Result	nt were a	also placed on the ted 3 to 5 cm above the
nsulating round ro Ambien Summa Run # 1 Aodific Io modifi Deviati	g support. All inter eference plane. nt Conditions: ary of Results Port AC power cations Made I fications were mad ions From The	EUT (for equipme face cabling betwe rem Rel. H - Conducted Ir Test Required 0.15-80MHz 1kHz 80% AM 3 Vrms During Testing le to the EUT durin	ent comprising sev een the EUT and the perature: 22 Humidity: 40 mmunity Level Applied 0.15-80MHz 1kHz 80% AM 3 Vrms	Performa Required	local support equipmer ecoupling network(s) w nce Criteria Met / Result	nt were a	also placed on the ted 3 to 5 cm above the
nsulating ground re Ambier Summa Run # 1 1 Modifie No modifi	g support. All inter eference plane. nt Conditions: ary of Results Port AC power cations Made I fications were mad ions From The	EUT (for equipme face cabling betwe rem Rel. H - Conducted Ir Test Required 0.15-80MHz 1kHz 80% AM 3 Vrms During Testing le to the EUT durin	ent comprising sev een the EUT and the perature: 22 Humidity: 40 mmunity Level Applied 0.15-80MHz 1kHz 80% AM 3 Vrms	Performa Required	local support equipmer ecoupling network(s) w nce Criteria Met / Result	nt were a	also placed on the ited 3 to 5 cm above the

Elliott
Client: Ubiquiti Networks

The following interface ports were not tested: Port(s) Reason	An ATA	ompany						
Account Manager: Susan Pelzl Contact: Jennifer Sanchez Immunity Standard(s): EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24 Environment: - Run #1: Conducted Susceptibility (EN61000-4-6) Test Level: 3 Vrms Modulation Details Step Size: 1 % Modulating Frequency: 1 kHz Dwell time: 2874 ms Modulation AM 0.15 - 80 AC M3 Note 1 0.15 - 80 R/AC M3 Note 2 0.15 - 80 R/45 Clamp Note 2 0.15 - 80 R/45 Clamp Note 2 0.15 - 80 R/45 Clamp Note 2 0.15 - 80 R/45 (LAN) Clamp Note 2	Client:	Ubiquiti Networks				Job Number:	J83026	
Contact: Jennifer Sanchez Immunity Standard(s): EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24 Environment: Run #1: Conducted Susceptibility (EN61000-4-6) Test Level: 3 Vrms Modulation Details Step Size: 1 % Modulation: AM Dwell time: 2874 ms Modulation: AM Duell time: 2874 ms Depth / Deviation: 80% Frequency Range Port Under Test Injection Method Comments MHz 0.15 - 80 AC M3 Note 1 0.15 - 80 RJ45 (POE injector Side) Clamp Note 2 0.15 - 80 RJ45 (LAN) Clamp Note 2 0.16 - 2:	Model:	AirCam Dome						
Immunity Standard(s): EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24 Environment: - Run #1: Conducted Susceptibility (EN61000-4-6) Modulation Details Modulation Details Step Size: 1 % Modulation Details Modulation Details Modulation Details Modulation Details Modulation Prequency: 1 kHz Modulation Method Comments Modulation Method Comments MHz Comments 0.15 - 80 RJ45 (POE injector Side) Clamp Note 2 0.15 - 80 RJ45 (POE injector Side) Clamp Note 2 0.15 - 80 RJ45 (LAN) Clamp Note 2 Vote 2: Cli					A	account Manager:	Susan Pelzl	
Run #1: Conducted Susceptibility (EN61000-4-6) Modulation Details Step Size: 1 % Modulating Frequency: 1 kHz Modulation: AM Dwell time: 2874 ms Opent / Deviation: 80% Clamp Clamp 0.15 - 80 RJ45 Clamp Note 2 0.15 - 80 <th col<="" td=""><td>Contact:</td><td>Jennifer Sanchez</td><td></td><td></td><td></td><td></td><td></td></th>	<td>Contact:</td> <td>Jennifer Sanchez</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Contact:	Jennifer Sanchez					
Test Level: 3 Vrms Step Size: 1 % Dwell time: 2874 ms Modulation Evaluation AM Depth / Deviation: AM Depth / Deviation: 80% Frequency Range Port Under Test Injection Method 0.15 - 80 RJ45 (POE injector Side) Clamp 0.15 - 80 RJ45 (POE injector Side) Clamp 0.15 - 80 RJ45 (LAN) Clamp 0.15 - 80 RJ45 (LAN) Clamp 0.15 - 80 RJ45 (LAN) Clamp Note 2 O.15 - 80 RJ45 (LAN) Note 2: Cleanera Side) Clamp Note 2: Cleanera Side) Verors were obsreved Note 1: The unit continued to operate as intended. The EUT continued to operate as outlined in test configuration #1 under the heading "EUT operation during immunity tests". No errors were obsreved Note 2: Client declared that these ports/cables will not exceed 3m. The following interface ports were not tested: Port(S) POE, LAN The ports are intended to connect to cables less than 3m in length and the product standard only	Immunity Standard(s):	EN 55024:1998 w/ A1:2007	1 & A2:2003 & KN	24		Environment:	-	
Step Size: 1 % Modulating Frequency: 1 kHz Dwell time: 2874 ms Modulation: AM Depth / Deviation: 80% Frequency Range Port Under Test Injection Method Comments MHz 0.15 - 80 AC M3 Note 1 0.15 - 80 RJ45 (POE injector Side) Clamp Note 2 0.15 - 80 RJ45 (POE camera Side) Clamp Note 2 0.15 - 80 RJ45 (LAN) Clamp Note 2 Viet 1: The unit continued to operate as intended. The EUT continued to operate as outlined in test configuration #1 under the heading "EUT operation during immunity tests". No errors were obsreved Note 2: Client declared that these ports/cables will not exceed 3m. The following interface ports were not tested: Port(s) Reason Port(s) Reason								
Dwell time: 2874 ms Modulation: AM Depth / Deviation: 80% Frequency Range Port Under Test Injection Method Comments 0.15 - 80 AC M3 Note 1 0.15 - 80 RJ45 (POE injector Side) Clamp Note 2 0.15 - 80 RJ45 Clamp Note 2 0.15 - 80 RJ45 Clamp Note 2 0.15 - 80 RJ45 Clamp Note 2 0.15 - 80 RJ45 (LAN) Clamp Note 2 0.15 - 80 RJ45 (LAN) Clamp Note 2 View Clamp Note 2 View View 0.15 - 80 RJ45 (LAN) Clamp Note 2 View Clamp Note 2 View View View Clamp Note 2 View View View View Continued to operate as intended. The EUT continued to operate as outlined in test configuration #1 under the heading "EUT operation during immunity tests". No errors were obsreved View View Note 2: Client declared that these ports/cables will not exceed 3m. View View View								
Depth / Deviation: 80% Frequency Range Port Under Test Injection Method Comments 0.15 - 80 AC M3 Note 1 0.15 - 80 RJ45 (POE injector Side) Clamp Note 2 0.15 - 80 RJ45 Clamp Note 2 0.15 - 80 RJ45 Clamp Note 2 0.15 - 80 RJ45 (LAN) Clamp Note 2 Note 1: The unit continued to operate as intended. The EUT continued to operate as outlined in test configuration #1 under the heading "EUT operation during immunity tests". No errors were obsreved Note 2: Client declared that these ports/cables will not exceed 3m. </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Frequency Range Port Under Test Injection Method Comments MHz 0.15 - 80 AC M3 Note 1 0.15 - 80 RJ45 (POE injector Side) Clamp Note 2 0.15 - 80 RJ45 (POE injector Side) Clamp Note 2 0.15 - 80 RJ45 Clamp Note 2 0.15 - 80 RJ45 (LAN) Clamp Note 2 Vote 1: The unit continued to operate as intended. The EUT continued to operate as outlined in test configuration #1 under the heading "EUT operation during immunity tests". No errors were obsreved Note 2: Client declared that these ports/cables will not exceed 3m. The following interface ports were not tested: Port(s) Reason POE, LAN The ports are intended to connect to cables less than 3m in length and the product standard only	Dwell time:	2874 ms						
MHz AC M3 Note 1 0.15 - 80 RJ45 (POE injector Side) Clamp Note 2 0.15 - 80 RJ45 (POE injector Side) Clamp Note 2 0.15 - 80 RJ45 (LAN) Clamp Note 2 Note 1: The unit continued to operate as intended. The EUT continued to operate as outlined in test configuration #1 under the heading "EUT operation during immunity tests". No errors were obsreved Note 2: Client declared that these ports/cables will not exceed 3m. The following interface ports were not tested: Port(s) Reason POE, LAN The ports are intended to connect to cables less than 3m in length and the product standard only			Depth / L	Deviation:	80%			
0.15 - 80 AC M3 Note 1 0.15 - 80 RJ45 (POE injector Side) Clamp Note 2 0.15 - 80 RJ45 Clamp Note 2 0.15 - 80 RJ45 Clamp Note 2 0.15 - 80 RJ45 (LAN) Clamp Note 2 0.15 - 80 RJ45 (LAN) Clamp Note 2 Note 1: The unit continued to operate as intended. The EUT continued to operate as outlined in test configuration #1 under the heading "EUT operation during immunity tests". No errors were obsreved Note 2: Client declared that these ports/cables will not exceed 3m. The following interface ports were not tested: Port(s) Reason POE, LAN The ports are intended to connect to cables less than 3m in length and the product standard only	Frequency Range	Port Under Test	Injection Method			Commen	its	
0.15 - 80 RJ45 (POE injector Side) Clamp Note 2 0.15 - 80 RJ45 Clamp Note 2 0.15 - 80 RJ45 (LAN) Clamp Note 2 0.15 - 80 RJ45 (LAN) Clamp Note 2 Note 1: The unit continued to operate as intended. The EUT continued to operate as outlined in test configuration #1 under the heading "EUT operation during immunity tests". No errors were obsreved Note 2: Client declared that these ports/cables will not exceed 3m. The following interface ports were not tested: Reason POE, LAN The ports are intended to connect to cables less than 3m in length and the product standard only								
0.15 - 80 RJ45 Clamp Note 2 0.15 - 80 RJ45 (LAN) Clamp Note 2 Note 1: The unit continued to operate as intended. The EUT continued to operate as outlined in test configuration #1 under the heading "EUT operation during immunity tests". No errors were obsreved Note 2: Client declared that these ports/cables will not exceed 3m. Reason Port(s) POE, LAN The ports are intended to connect to cables less than 3m in length and the product standard only								
(POE Camera Side) 0.15 - 80 RJ45 (LAN) Clamp Note 2 Note 1: The unit continued to operate as intended. The EUT continued to operate as outlined in test configuration #1 under the heading "EUT operation during immunity tests". No errors were obsreved Note 2: Client declared that these ports/cables will not exceed 3m. The following interface ports were not tested: Port(s) Reason POE, LAN The ports are intended to connect to cables less than 3m in length and the product standard only								
0.15 - 80 RJ45 (LAN) Clamp Note 2 Note 1: The unit continued to operate as intended. The EUT continued to operate as outlined in test configuration #1 under the heading "EUT operation during immunity tests". No errors were obsreved Note 2: Client declared that these ports/cables will not exceed 3m. The following interface ports were not tested: Reason POE, LAN The ports are intended to connect to cables less than 3m in length and the product standard only	0.15 - 80		Clamp	Note 2				
Note 1: The unit continued to operate as intended. The EUT continued to operate as outlined in test configuration #1 under the heading "EUT operation during immunity tests". No errors were obsreved Note 2: Client declared that these ports/cables will not exceed 3m. The following interface ports were not tested: Reason POE, LAN The ports are intended to connect to cables less than 3m in length and the product standard only	0 15 - 80		Clamp	Note 2				
Port(s) Reason POE, LAN The ports are intended to connect to cables less than 3m in length and the product standard only	The following interface port	ts were not tested:						
POE, LAN The ports are intended to connect to cables less than 3m in length and the product standard only					Reason			
requires the test to be performed on cables exceeding 3m in length.		The ports are inte	nded to connect to	o cables le		m in length and th	ne product standard only	
							. ,	

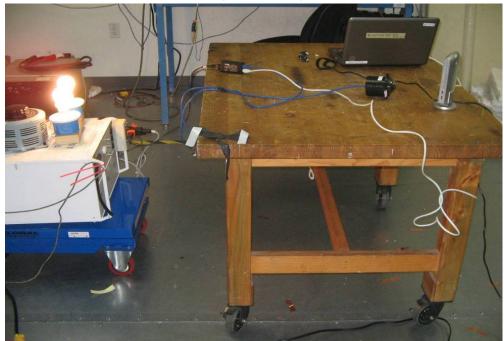

All DLLE	Company		
Client:	Ubiquiti Networks	Job Number:	J83026
Model:	AirCam Dome	T-Log Number:	T84420
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Immunity Standard(s):	EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment:	-

Test Configuration Photograph(s)

An LALLE	Company		
Client:	Ubiquiti Networks	Job Number:	J83026
Model:	AirCam Dome	T-Log Number:	T84420
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Immunity Standard(s):	EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment:	-

~	Ellio					El	MC Test Data
	Client:	Ubiquiti Networks			Job	Number:	J83026
	Model:	AirCam Dome				Number:	
	Cantaat	lannifan Canaban			Account	Manager:	Susan Pelzl
Immi		Jennifer Sanchez	/ A1:2001 & A2:200	13 8 KN 24	Environment: -		_
	unity Stanuaru(s).	LIN 33024.1990 W	7 AT.2001 & A2.200	J3 & KN 24	LIIV		-
		Voltag	e Dips and li	nterrupts (E	EN 61000-4-1	1)	
•	becific Details bjective: The obje listed ab	ective of this test se	ession is to perform	final qualificatior	n testing of the EU	T with resp	pect to the specification
Test E	of Test: 8/31/201 Ingineer: Luis Cat Location: Fremont	orera	Config. Used: Config Change: EUT Voltage:	None			
Jenera	l Test Configu	iration					
	•		e located on a non-	conductive henc	h		
	and an local supp						
Ambier	nt Conditions:	Tem	perature: 25	°C			
		Rel. H	Humidity: 39	%			
Summa	ary of Results						
Run #	Port	Test			nce Criteria		Comments
	4 and KN24	Required	Applied	Required	Met / Result		
	ed below cover bo	oth standards)					
		>95%	>95%	D		220V/60	Hz nominal
1	AC power	1/2 period	1/2 period	В	A / Pass		d at 60Hz = 8.33 ms)
1	AC power	30%	30%	С	A / Pass		Hz nominal
	•	30 periods >95%	30 periods >95%			0.0.01 111.0	ods at 60 Hz = 500 ms) Hz nominal
1	AC power	300 periods	300 periods	С	C / Pass		iods at 60 Hz = 5 sec)
1	AC power	>95% ½ period	>95% ½ period	В	A / Pass	230V50F Additionation to satisfy	Hz nominal al voltage dip at 230V/50H / EN 55024 requirements d at 50Hz = 10 ms)
·		¹ / ₂ period		_			

No deviations were made from the requirements of the standard.



Model: Ai	terrupts	1 & A2:2003 & KN 24 Volts 60 Hz Interrupt Voltage 0 154 0	Job Number: J8 T-Log Number: T8 Account Manager: Si Environment: - Environment: - Note 1 Note 2	34420 usan Pelzl
Model: Ai Contact: Je Immunity Standard(s): Ef un #1: Voltage Dips and In Nominal Operating N Voltage Dips/Time % / ms or % / periods >95% ½ period 30% 300 periods >95% 300 periods >95% % period 300 periods >95% 300 periods >95% % period The unit continued to "EUT operation durin"	rCam Dome ennifer Sanchez N 55024:1998 w/ A1:200 Iterrupts /oltage of EUT: 220 Port Under Test AC Power AC Power AC Power	Volts 60 Hz Interrupt Voltage 0 154 0	T-Log Number: TE Account Manager: Summer Environment: - Commer Note 1 Note 1 -	34420 usan Pelzl
Immunity Standard(s): Ef un #1: Voltage Dips and In Nominal Operating N Voltage Dips/Time % / ms or % / periods >95% ½ period 30% 30 periods >95% 300 periods >95% 300 periods >95% 2 period The unit continued to "EUT operation durir	N 55024:1998 w/ A1:200 Iterrupts /oltage of EUT: 220 Port Under Test AC Power AC Power AC Power	Volts 60 Hz Interrupt Voltage 0 154 0	Environment: - Comme Note 1 Note 1	
Immunity Standard(s): Ef Immunity Standard(s): Ef Immunity Standard(s): Ef Immunity Standard(s): Ef Immunity Standard(s): Ef Nominal Operating N Voltage Dips/Time % / ms or % / periods >95% ½ period 30% 300 periods >95% 300 periods >95% ½ period Immunity Standard(s): Ef Immunity Standard(s): Ef Immunity Standard(s): Ef Standard(s): Ef Immunity Standard(s): Ef	N 55024:1998 w/ A1:200 Iterrupts /oltage of EUT: 220 Port Under Test AC Power AC Power AC Power	Volts 60 Hz Interrupt Voltage 0 154 0	Environment: - Comme Note 1 Note 1	
Immunity Standard(s): Ef n #1: Voltage Dips and In Nominal Operating N Voltage Dips/Time % / ms or % / periods >95% ½ period 30% 30 periods >95% 300 periods >95% ½ period The unit continued to "EUT operation durir	N 55024:1998 w/ A1:200 Iterrupts /oltage of EUT: 220 Port Under Test AC Power AC Power AC Power	Volts 60 Hz Interrupt Voltage 0 154 0	Comme Note 1 Note 1	ents
n #1: Voltage Dips and In Nominal Operating V Voltage Dips/Time % / ms or % / periods >95% ½ period 30% 30 periods >95% 300 periods >95% 300 periods >95% 1/2 period te 1: The unit continued to "EUT operation durir	Iterrupts /oltage of EUT: 220 Port Under Test AC Power AC Power AC Power	Volts 60 Hz Interrupt Voltage 0 154 0	Comme Note 1 Note 1	ents
% / ms or % / periods >95% ½ period 30% 30 periods >95% 300 periods >95% ½ period te 1: The unit continued to "EUT operation durir	AC Power AC Power AC Power	0 154 0	Note 1 Note 1	ents
% / ms or % / periods >95% ½ period 30% 30 periods >95% 300 periods >95% ½ period te 1: The unit continued to "EUT operation durir	AC Power AC Power AC Power	0 154 0	Note 1 Note 1	ents
½ period 30% 30 periods >95% 300 periods >95% ½ period te 1: The unit continued to "EUT operation durin"	AC Power AC Power	154 0	Note 1	
30 periods >95% 300 periods >95% ½ period te 1: The unit continued to "EUT operation durir	AC Power	0		
300 periods >95% ½ period te 1: The unit continued to "EUT operation durir			Note 2	
½ period te 1: The unit continued to "EUT operation durir	AC Power	0		
e 1: The unit continued to "EUT operation durir			Note#1 at 230VAC/50Hz	

An ZALZE	company		
Client:	Ubiquiti Networks	Job Number:	J83026
Model:	AirCam Dome	T-Log Number:	T84420
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Immunity Standard(s):	EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment:	-

Test Configuration Photograph(s)

An <u>2/12</u>) company		
Client	Ubiquiti Networks	Job Number:	J83026
Model:	AirCam Dome	T-Log Number:	T84420
		Account Manager:	Susan Pelzl
Contact:	Jennifer Sanchez		
Immunity Standard(s):	EN 55024:1998 w/ A1:2001 & A2:2003 & KN 24	Environment:	-

Appendix C Product Labeling Requirements

The following information has been provided to clarify notification, equipment labeling requirements and information that must be included in the operator's manual. These requirements may be found in the standards/regulations listed in the scope of this report.

Label Location

The required label(s) must be in a *conspicuous location* on the product, which is defined as any location readily visible to the user of the device without the use of tools.

Label Attachment

The label(s) must be *permanently attached* to the product, which is defined as attached such that it can normally be expected to remain fastened to the equipment during the equipment's expected useful life. A paper gum label will generally <u>not</u> meet this condition.

United States Class A Label

This device complies with Part 15 of FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

European and Australian Class A Label

Warning - This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

Japanese Class A Label

この装置は、クラスA情報技術装置です。この装置を家庭環境で使用する と電波妨害を引き起こすことがあります。この場合には使用者が適切な対策 を講ずるよう要求されることがあります。 VCCI-A

The English translation for the labeling text is: *This is a Class A product. In a domestic* environment this product may cause radio interference in which case the user may be required to take adequate measures.

Industry Canada

For ICES-003 (digital apparatus), the product must be labeled with a notice indicating compliance e.g.

This Class A digital apparatus complies with Canadian ICES-003

Cet appareil numérique de la classe A est conforme à la norme NMB-003 du Canada

If there is limited space on the product then the text may be placed in the manual.

Appendix D User Manual Regulatory Statements

Where special accessories, such as shielded cables, are required in order to meet the emission limits, appropriate instructions regarding the need to use such accessories must be contained on the first page of text concerned with the installation of the device in the operator's manual.

A requirement by FCC regulations, and recommended for all regulatory markets, is a cautionary statement to the end user that changes or modifications to the device not expressly approved by you, the manufacturer, could void their right to operate the equipment.

United States Class A Manual Statement

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Note: Additional information about corrective measures may also be provided to the user at the company's option.

The FCC has indicated that the radio interference statement be bound in the same manner as the operator's manual. Thus, a loose-leaf insert page in a bound or center-spine and stapled manual would <u>not</u> meet this condition.

European and Australian Class A Manual Statement

Warning - This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

Note: This statement is not required if it is provided on a label affixed to the product.

Japanese Class A Manual Statement

この装置は、情報処理装置等電波障害自主規制協議会(VCCI)の基準 に基づくクラスA情報技術装置です。この装置を家庭環境で使用すると電波 妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ず るよう要求されることがあります。

The English translation for the text is: *This is Class A product based on the standard of the Voluntary Control Council For Interference by Information Technology Equipment (VCCI). If this equipment is used in a domestic environment, radio disturbance may arise. When such trouble occurs, the user may be required to take corrective actions.*

Appendix E Additional Information for VCCI

The VCCI requires a notification for each product sold with the VCCI label. A notification letter on your company letterhead with 2 copies of Form 1 must be sent to the VCCI in Japan at the following address:

Voluntary Control Council for Interference by Information Technology Equipment NOA Building, 7th Floor 3-5 Azabudai 2-chome, Minato-ku, Tokyo 106-0041, Japan

You may also submit the form electronically on the VCCI web site http://www.vcci.or.jp/vcci_e/member/index.html. Go to "Documents and Forms, Report of Compliance" in Members only section. Enter your username and password and click "OK". Then click "Please click here if you submit report of compliance electronically" to open the submission form. Fill all required columns and click "CONFIRM" after making sure everything is filled properly.

Appendix F Additional Information for Australia and New Zealand

In Australia, an application to use the C-Tick mark must be made by the importer of the product. The importer must hold a Declaration of Conformity and compliance folder, of which this report forms a part, for each product sold with a C-Tick mark.

The European harmonized standards and international (CISPR/IEC) standards are acceptable for demonstrating compliance with the Australian/New Zealand compliance framework. This is explained in the document "Electromagnetic Compatibility - Information for suppliers of electrical and electronic products in Australia and New Zealand", dated July 2003. While this document is being revised information can be found on the Australian Communications and Media Authority (ACMA) website by following links from their homepage (http://www.acma.gov.au/WEB/HOMEPAGE/pc=HOME) to EMC compliance & labeling regulatory arrangements.

Appendix G Basic and Reference Standards

Subpart B of Part 15 of FCC Rules for digital devices.

FCC Part 15 Subpart B references the use of ANSI C63.4–2003: "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" for the purposes of evaluating the radiated and conducted emissions from digital devices.

VCCI Regulations For Information Technology Equipment, dated April 2009

The VCCI Regulations For Voluntary Control Measures of radio interference generated by Information Technology Equipment make reference to the following National and International standards for the purposes of making measurements. Elliott's test procedures associated with measurements against VCCI rules use these standards in addition to the procedures laid out in the VCCI regulations.

Standard	Description / Title
CISPR 22: Ed 5.2:2006	Information Technology Equipment - Radio disturbance characteristics - Limits and
	methods of measurement
CISPR 16-1-1 Ed2.1:2006	Specification for radio disturbance and immunity measuring apparatus and method –
	Part 1-1: Radio disturbance and immunity measuring apparatus – Measuring
	apparatus.
CISPR 16-1-2 Ed1.2:2006	Specification for radio disturbance and immunity measuring apparatus and methods –
	Part 1-2: Radio disturbance and immunity measuring apparatus – Measuring
	apparatus – Ancillary equipment – Conducted disturbances
CISPR 16-1-4 Ed2.0:2007	Specification for radio disturbance and immunity measuring apparatus and methods
	-Part 1-4: Radio disturbance and immunity measuring apparatus - Ancillary
	equipment – Radio disturbances
CISPR 16-2-3 Ed1.0:2003	Specification for radio disturbance and immunity measuring apparatus and methods -
	Part 2-3: Methods of measurement of disturbance and immunity – Radiated
	disturbance measurements
CISPR 16-4-2 Ed1.0:2003	Specification for radio disturbance and immunity measuring apparatus and methods –
	Part 4-2: Uncertainties, statistics and limit modeling – Uncertainty in EMC
	measurements
ANSI C63.4:2003	American National Standard for Method of Measurement of Radio Noise Emissions
	from Low Voltage Electrical and Electronic Equipment in the Range 9kHz to 40
	GHz.

EN 55022:2006 including amendment A1:2007

EN 55022:2006 references various international and European standards to be used when making the required measurements. The references all cite dated versions of the standards, therefore the editions cited are used.

International and EN equivalent	Description	Standard Used	
standard			
CISPR 16-1-1 2003	Specification for radio disturbance and immunity measuring	CISPR 16-1-1 2003	
EN 55016-1-1 2004	apparatus and methods Part 1-1: Radio disturbance and immunity		
	measuring apparatus - Measuring apparatus		
CISPR 16-1-2 2003	Specification for radio disturbance and immunity measuring	CISPR 16-1-2 2003	
+ A1 2004	apparatus and methods Part 1-2: Radio disturbance and immunity	+ A1 2004	
EN 55016-1-2 2004	measuring apparatus - Ancillary equipment - Conducted		
+ A1 2005	disturbances		
CISPR 16-1-4:2003	Specification for radio disturbance and immunity measuring	CISPR 16-1-4:2003	
+ A1 2004	apparatus and methods Part 1-4: Radio disturbance and immunity	+ A1 2004	
EN 55016-1-4: 2004	measuring apparatus - Ancillary equipment - Radiated		
+ A1: 2005	disturbances		
CISPR 16-4-2 2003	Specification for radio disturbance and immunity measuring	CISPR 16-4-2 2003	
EN 55016-4-2 2004	apparatus and methods Part 4-2: Uncertainties, statistics and limit		
	modelling - Uncertainty in EMC measurements		
Unless the international publication has been modified by common modifications, indicated by (mod), either the			
intentional or the EN standard may be used. Where the EN standard differs from the intentional standard then the			
EN version is used. For all of the standards listed above there are no common modifications therefore Elliott			
makes use of the international version of all standards listed.			

EN 55024:1998 including amendments A1:2001 and A2:2003

EN 55024 references various European standards to be used when making the required measurements. When the referenced standard is cited by version (date or revision) then that version is used except where noted. In instances where the standards are referenced without citing the version to be used, the current versions (or its international equivalent) are used.

Referenced standard	Description	Standard Used
IEC 61000-4-2 1995	Electromagnetic compatibility (EMC) Part 4: Testing and	IEC 61000-4-2:2008
EN 61000-4-2 1995	measurement techniques -" Section 2: Electrostatic discharge immunity test	EN 61000-4-2:2009
IEC 61000-4-3 1995	Section 3: Radiated, radio-frequency, electromagnetic field	IEC 61000-4-3:2006
(mod)	immunity test	A1:2007
EN 61000-4-3 1996		A2:2010
		EN 61000-4-3:2006
		A1:2008
		A2:2010
IEC 61000-4-4 1995	Section 4: Electrical fast transient/burst immunity test	IEC 61000-4-4:2004
EN 61000-4-4 1995		A1:2010
		EN 61000-4-4:2004
		A1:2010
IEC 61000-4-5 1995	Section 5: Surge immunity test	IEC 61000-4-5:2005
EN 61000-4-5 1995		EN 61000-4-5:2006
IEC 61000-4-6 1996	Section 6: Immunity to conducted disturbances, induced by	IEC 61000-4-6:2008
EN 61000-4-6 1996	radio-frequency fields	EN 61000-4-6:2009
IEC 61000-4-8 1993	Section 8: Power frequency magnetic field immunity test	IEC 61000-4-8 1993
EN 61000-4-8 1993		A1:2000
		EN 61000-4-8:1993
		A1:2001
IEC 61000-4-11:1994	Section 11: Voltage dips, short interruptions and voltage	IEC 61000-4-11:2004
EN 61000-4-11:1994	variations immunity tests	EN 61000-4-11:2004
	rences to the standards are dated references, all of the basic EN 6	
	24 have been superseded by more recent versions. As the date of v	
the older versions of sta	andards, the EN / IEC versions of these basic standards as detailed	d in the third column are
used.		

CISPR 24:1997 including amendments A1:2001 and A2:2002

CISPR 24 references various IEC basic standards to be used when making the required measurements. When the referenced standard is cited by version (date or revision) then that version is used except where noted. In instances where the standards are referenced without citing the version to be used, the current versions are used.

Referenced standard	Description	Standard Used		
IEC 61000-4-2 1995	Electromagnetic compatibility (EMC) Part 4: Testing and	IEC 61000-4-2:2008		
	measurement techniques -" Section 2: Electrostatic discharge			
	immunity test			
IEC 61000-4-3 1995	Section 3: Radiated, radio-frequency, electromagnetic field	IEC 61000-4-3:2006		
	immunity test	A1:2007		
		A2: 2010		
IEC 61000-4-4 1995	Section 4: Electrical fast transient/burst immunity test	IEC 61000-4-4:2004		
		A1:2010		
IEC 61000-4-5 1995	Section 5: Surge immunity test	IEC 61000-4-5:2005		
IEC 61000-4-6 1996	Section 6: Immunity to conducted disturbances, induced by radio-	IEC 61000-4-6:2008		
	frequency fields			
IEC 61000-4-8 1993	Section 8: Power frequency magnetic field immunity test	IEC 61000-4-8 1993		
		A1:2000		
IEC 61000-4-11	Section 11: Voltage dips, short interruptions and voltage	IEC 61000-4-		
1994	variations immunity tests	11:2004		
Although all of the references to the standards are dated references, all of the basic IEC 61000-4-x standards				
referenced by CISPR 24 have been superseded by more recent versions. As the date of withdrawal has passed for				
the older versions of standards, the versions of these basic standards as detailed in the third column are used.				

End of Report

This page is intentionally blank and marks the last page of this test report.